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Semi-sparsity Priors for Image Structure
Analysis and Extraction

Junging Huang, Haihui Wang, Michael Ruzhansky

Abstract—Image structure-texture decomposition is a long-standing and fundamental problem in both image processing and computer
vision fields. In this paper, we propose a generalized semi-sparse regularization framework for image structural analysis and extraction,
which allows us to decouple the underlying image structures from complicated textural backgrounds. Combining with different textural
analysis models, such a regularization receives favorable properties differing from many traditional methods. We demonstrate that it is
not only capable of preserving image structures without introducing notorious staircase artifacts in polynomial-smoothing surfaces but
is also applicable for decomposing image textures with strong oscillatory patterns. Moreover, we also introduce an efficient numerical
solution based on an alternating direction method of multipliers (ADMM) algorithm, which gives rise to a simple and maneuverable way
for image structure-texture decomposition. The versatility of the proposed method is finally verified by a series of experimental results
with the capability of producing comparable or superior image decomposition results against cutting-edge methods.

Index Terms—Semi-sparsity model, image structure extraction, structure/cartoon-texture decomposition, image texture filtering.

1 INTRODUCTION

Atural images always contain various well-organized
Nobjects together with some regular/irregular textural
patterns, which convey rich information for both machine
and human vision. In many psychology and perception [1],
[2], it has also found that the contribution of visual cues
mostly comes from geometrical structures of objects rather
than local individual details. Interestingly, it is always easy
for human visual system (HSV) to distinguish main objects
from the complex textural backgrounds. Based on these ob-
servations, it is always desirable to decouple an image into
different meaningful components, for example, a structural
part and one or multiple textural parts [3], [4]. The problem
is known as image structure-texture decomposition and has
gained great attention in research fields because it helps to
extract and analyze the preferred information of images.
Such an image decomposition is also proved to be beneficial
for a variety of vision-based applications such as image edge
extraction [3], [5], cartoon and abstraction [5], tone mapping
and enhancement [6], [7], and so on.
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Figure 1. An illustration of image structures and textures with different
characteristics in local close-ups (bottom). It is clear that image textures
may have various forms with coarse-to-fine oscillating patterns arranged
in spatial (non-)uniformly, (ir-)regularly, (an-)isotropically, and so on;
while the underlying image structures are in general referred to as strong
edges, piecewise constant and/or smoothing surfaces.

Decomposing an image into meaningful structural and
textural components is generally a challenging problem due
to the complex visual analysis processes. As shown in Fig.
visual objects could be exhibited in various and complicated
forms — for example, arranged in spatial (non-)uniformly,
(ir-)regularly, (an-)isotropically. The structural and textural
parts, as illustrated in , [E[], could be vague under the
semantic descriptions, because they are highly dependent
on the scale — that is, image structures in one scale can
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be regarded as the textures in another scale. As a result,
it is not easy to model them based on a simple model. In
practice, it is necessary to characterize both structural and
textural parts to make the image decomposition problem to
be deterministic when modeling them mathematically.

In a general sense, an image is assumed to be composed
of two fundamental parts: a structural part — referring to
the geometrical clues, and a textural part — representing
these coarse-to-fine scale details or noise [3]], [4], [10], [11]]. It
may also suggest that the structural part contains semantic
meaning elements such as homogeneous regions, object
contours, and sharpening edges, while the textural part
could have more abundant and diverse local features, at
least the periodic and oscillating information [3], [8]]. This as-
sumption has been adopted in many existing methods such
as partial differential equation (PDE) diffusion methods [4],
[12], and structure-aware filtering methods [6], [13], [14],
variational-based methods [8], [10], [15] and higher-order
extentions [16]], [17], and so on. Despite the great success,
there is still considerable interest to exploit powerful and ef-
ficient methods to achieve visual-appealing decomposition
results both theoretically and practically.

In this paper, we propose a novel semi-sparse model
for image structure-texture decomposition, which devotes
to extracting piece-wise smoothing structures from complex
textural backgrounds. This new model is derived from an
optimization framework consisting of L'-norm data fidelity
and semi-sparse regularization, which takes advantage of
two-fold benefits for high-quality decomposition results. On
the one hand, it has shown in traditional methods [18[]-[20]
that L'-norm data fidelity helps to capture the oscillatory
patterns and is empirically suitable for structure-texture de-
composition. On the other hand, it also turns out in cutting-
edge filtering methods [21] that semi-sparsity prior knowl-
edge is beneficial for fitting polynomial-smoothing surfaces
while preserving these sparse features such as edges and
singularities. As illustrated hereafter, such a combination
indeed possesses two-fold benefits of L!-norm data fidelity
and semi-sparse regularization and is empirically suitable
for image structure-texture decomposition. The main con-
tribution of the paper is summarized as follows:

e A simple and effective semi-sparsity minimization
model is designed for image structure-texture de-
composition, which is an optimization-based frame-
work by means of two-fold benefits: L!-norm data
fidelity and semi-sparse regularization.

e An efficient numerical solution based on a multi-
block alternating direction method of multipliers
(ADMM) algorithm is introduced to solve the
non-convex and non-smooth minimization problem,
which gives rise to a powerful tool for image
structure-texture decomposition.

e A number of experimental results are also presented
and discussed to demonstrate its versatility and
many benefits to image structure-texture decomposi-
tion, where our semi-sparsity model performs more
favorable image decomposition results on natural
images against many state-of-the-art methods.

We further point out that the proposed approach has
a very simple form and possesses attractive properties in
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decoupling main structures from complex textures. Despite
the non-convex nature of the optimization problem, the
proposed method can be efficiently solved using a multi-
block ADMM algorithm and significantly improves the
performance of image decomposition, in particular towards
natural images. Notice also that the semi-sparsity regular-
ization is also possible to be combined with other functions
for a more complex image decomposition — for example,
image structure, texture, and noise decomposition. More
details will be discussed below.

The rest paper is organized as follows. In Sec. [2} we
review the typical methods for modeling the textural and
structural parts. In Sec. 3] we derive the proposed model
in detail and illustrate the properties of L!-norm data fi-
delity and semi-sparsity regularization. An efficient ADMM
numerical solution is then introduced in Sec. {4} The perfor-
mance of the proposed method is compared in Sec. [5| with
a series of experimental results. After that, we give a brief
analysis of the possible extensions in Sec. [} The conclusion
and further work are drawn in Sec.

2 STRUCTURE AND TEXTURE ANALYSIS

In the literature, many computational models have been
developed to either extract main structures from an image
or dedicate an explicit image decomposition. We review
some related work regarding structural and textural analysis
models for favorable image decomposition results.

2.1 Problem Formulation

We consider an additive form of the image decomposition
problem — that is, given an image f, it is possible to form
the problem, either explicitly or implicitly, into a general
optimization-based framework:

min S(u) + T (v), subjectto u+v=f, 1)

where © and v are the structural and textural counterparts
defined on Q € R?, typically the same rectangle or a square
as that of f. The functional S(u) and 7 (v) are defined in
some proper spaces to characterize the properties of v and u,
respectively. In general, v and v could be exhibited in vary-
ing and complicated forms in natural images. In practice,
S(u) is advocated to capture the well-structural components
such as homogeneous regions and salient edges, and 7T (v)
may be expected to have the capacity of extracting the textu-
ral part such as repeating or oscillating patterns or random
noise. The generalization of S(u) and 7 (v) contributes to
various existing methods in the literature.

2.2 Modeling S(u) for Structural Analysis

Image “structure” is a vague semantic terminology and hard
to give a mathematical definition. Intuitively, the structural
part contributes to the majority of the semantic information
of an image, which is always assumed to be composed of
piece-wise constants or smoothing surfaces with discontin-
uous or sharpening edges. The structural analysis is devoted
to finding suitable functions S(u) to represent image struc-
tures. As shown in Tab. [1} S(u) is typically formulated as a
regularization term in the context of Eq.
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Table 1 Table 2
Methods of modeling structural parts Methods of modeling textural parts
Methods | Structural functional S(u) Description and References Models]| Textural functional 7 (v) Description and Reference
Structure-aware u=WF§f Local filters [13], [22], [23] < T@)=Ao|Z, |o|? = { llu— 113, R?F model [10]
i »’ P’ — L 19], [31
filters S(u) = g(u, Vu)||[Vu|l2, Global filters [5], [6] I lu=Fllx, L7 space [19], [31]
T ol Tl ola={ Melloli=b€G 6 oo g
S(u):=a||Vull1, TV regularization [3], [10], [15], [19] I = @ lle =g =(v]|v=divg}, =P
Regularized s —allv I dient larizati 14 14 T g e
methods (w):=allVullo, o gradient regularization [14], [24] T () :=Alvll g1, vl g =11V (A~ Yo||2, Hilbert space [T5]
S(u)=al|Vul1+8|V3ull1, TV-TV? models [25], [26] < it {9l orloe Gol
2 _Jinf{|lgllLrlvE€Gp},
S(w)=al Vu—vl+8]Vols, TGV models [27], [28] _‘% Allf ~u v\lﬁvl\vncwHvHGp'*{Gp:{U|U:divg}, Gpspace Bl
Patch-based Vit := (u(y)—u(z))y/w(z,y), low-rank [29] S 5 v € W*P, Sobolev space [32]
Models T A=Ktz +yllvll llvllo= s
S(u) =a||Woull1 + B|LoWoull1, non-local [30] 3 v € H™*, Hilbert space [33]

The early work for structure analysis can be traced back
to nonlinear PDE methods for anisotropic diffusion [3], [4],
[12]. The diffusion process helps to preserve main image
structures and remove local textural details, leading to
structure-preserving smoothing effects. This idea is further
explored by structure-aware filters for simplification and
ease of implementation. The existing filters are generally
divided into local ones: bilateral filter [13]], guided filter [22]
and many variants, and global ones: weighted least square
(WLS) filter [6] and extensions [34], [35], and so on. Many
structure-aware filters such as Laplacian filter [36]], and
rolling guidance filter (RGF) [37] also employ multi-scale
analysis techniques to characterize coarse-to-fine structures.
Although these filters are not originally designed for the
goal of structural analysis, they have been used as practical
tools for image decomposition. However, many of them
may cause blur effects around strong edges and are not
adequate to decouple main structures from strong oscillat-
ing textural backgrounds. Recently, some special filters are
also designed for image structure extraction such as bilateral
texture filter [23], relative total variation (RTV) model [5]
and variants [38], [39], and so on.

Another trend for image structural analysis is based on
variational theory in functional spaces. For example, the
pioneering Rudin—Osher-Fatemi (ROF) model [10] assumes
that the structural part u belongs to a bounded variation
(BV) space, allowing for piece-wise constant functions to
represent image structures. The BV space assumption of
natural images has been extensively studied as a powerful
mathematical tool in many computational models since the
induced total variational (T'V) regularization has a famous
structure-preserving property. In theory, it is possible for
TV-based methods to capture oscillating signals for better
decomposition results in accordance with some concisely-
designed textural models — as interpreted hereafter, L'
space [19], weaker G space [3], Hilbert space [15], and so on.
As demonstrated therein, these spaces allow to decouple the
complicated textures from image structures, nevertheless,
the TV-based regularization for image structures has two
limitations due to the properties of the BV space: (1) the
TV-based regularization enforces piece-wise constant results
which may cause staircase artifacts, especially in the region
of polynomial-smoothing surfaces, and (2) the non-linear
thresholding operator of TV-based models give rise to over-
smoothing effects around sharpening edges. The defects are
further illustrated in the experimental results.

Regarding the staircase artifacts in TV-based models,
an effective remedy is based on higher-order methods for
image structural analysis [25]], [32], [40], [41]. For example,
it turns out in the total generalized variation (TGV) [42]
that a higher-order gradient regularization is beneficial for
signal/image denoising, as it helps reduce staircase effects
substantially when preserving the jump and discontinuities
(edges). Based on the property of TGV regularization, the
TGV-L! [27], TGV-0OSV [32], TGV-Gabor [17] methods
have also been proposed to replace the TV-based ones for
image structure analysis. The TV-TV? model is another
higher-order modification based on [25], which advocates a
similar property as the TGV-based models with resemble
effects. Despite the improvements of these higher-order
methods in suppressing the notorious staircase artifacts,
they still suffer from over-smoothing problems around the
sharpening discontinuous edges [28]], [40]. More recently,
a semi-sparsity model [21]] is also proposed based on a
higher-order regularization model, which is proven to have
powerful simultaneous-fitting abilities in both sharpening
edges and polynomial-smoothing surfaces. However, it is
not suitable for image structure extraction because of the
limitation in large oscillatory textural components.

The efforts of avoiding blurry artifacts around strong
edges have also received considerable attention in image
structural analysis. The sparsity-inducing L¢ regularization
has been demonstrated to be effective in preserving strong
edges in structure-aware smoothing methods [14], [24].
The advantage is further demonstrated in a higher-order
extension for signal/image filtering [21]. However, they
are not suitable for image structure-texture decomposition
directly due to the limitation of removing high-contrast
oscillating details. Recently, a new L, minimization based
on the RTV metric [5] has been proposed for image structure
retrieval, which turns out to be, in particular, applicable for
image structure extraction [38]. Despite the advance of Lg
minimization in capturing sharpening edges, it is worth
noting that such a minimization problem is a non-convex
and non-smooth optimization problem and the numerical
solution is computationally expensive in the case of large-
scale scenarios, despite the recent endeavor in developing
acceleration techniques. Inspired by the properties of Lg
minimization [5] and higher-order extension [21], we will
further discuss the properties of Ly norm regularization in
higher-order gradient domains and demonstrate its advan-
tages for image structural analysis.
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2.3 Modeling 7 (v) for Textures or Noises

The textural part v, as aforementioned, can be exhibited
in diverse and complicated forms in natural images. In
general, image texture is recognized as repeated patterns
consisting of oscillating details, random noise, and so on. In
many existing methods, the textural part v is modeled as
the residual of an image f subtracting the structural part
u — that is, v = f —u. This simplified assumption has
been adopted by many existing methods since it provides
an easy but acceptable approximation for modeling image
textures mathematically. The typical functional 7 (v) for
textural analysis in the literature are presented in Tab.
Accordingly, T (v) is always treated as a data-fidelity term
in the context of Eq. |1} We briefly discuss their advantages
and limitations as follows.

In the well-known ROF model [10], v is simply assumed
to be in L? space with image structures u in BV space.
The ROF model takes advantage of BV space to penalize
oscillating signals when representing the structural part u
with piece-wise smoothing functions. However, it is not
suitable for large oscillatory textural modes despite using
multi-scale analysis [43]. Along with the ROF model, many
image decomposition methods were subsequently proposed
for better textural modeling results. A simple but attractive
remedy is to model the texture part v in the L' space instead
of the Lo, which leads to the well-known TV-L' model
for image textural analysis [31], [44]. The benefits underpin
the appealing properties of L* space that help to decouple
large-scale oscillating details, outliers and impulse noise,
while preserving geometrical features without eroding main
structures [18], [19]. Notice that the TV-L' model needs to
solve a type of non-smooth minimization problem and the
numerical solution is time-consuming even with a concisely-
designed algorithm [19], [45].

It has also witnessed many efforts to find more suitable
functions to model the textural part v in the literature. The
TV-G model [3], for example, takes into account a weaker
space endowed G-norm to replace LP(p > 1) space for
oscillating patterns. The theoretical justification shows that
the G space identifies the Banach space containing signals
with large oscillations, in particular image textures and
noise. However, a direct solution to the TV-G model is
not possible due to the unavailability of the corresponding
Euler-Lagrange equation [8]], [46]. An alternative way is
using Gp(1 < p < o0) to approximate the problem [8].
The experimental results also verify its better property for
capturing the oscillating patterns [47]]. Based on the G-norm
space assumption, the model has been further explored
and implemented along with different structural analysis
models, for example, higher-order TGV model [32], edge-
driven high-order BV model [48] and adaptive directional
variant [49]. Despite the advantages, they may partially
decouple image structures into textures and cause blurry
effects around strong or sharpening edges.

Similar to the G-norm assumption, the oscillating pat-
terns in the Osher-Sole-Vese (OSV) model are measured
in H~! space given by the second-order derivative of
functions in a homogeneous Sobolev space [15]. The nu-
merical solution of the OSV model turns out to be easy
to implement based on the corresponding Euler-Lagrange
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equation. In a case of more generalized theoretical analysis
[33], it is shown that the component v can be modeled in
the Hilbert-Sobolev space H ~°. Along with the strategy of
finding admissible textural spaces, there also exist many
other models for texture analysis — for example, the TV-
div(BMO) [50] and TV-Besov [51], which are also combined
with different regularization terms for better results. In the
practical implementations, the use of different spaces for
textural analysis has shown limited improvements despite
the different properties of these spaces. The phenomenon
may be largely due to the complex textural patterns of
images, in particular for natural images.

2.4 Extensive Analysis

Although we discuss a range of models for structure and
texture analysis, there exist many other methods that can be
also understood under the interpretation of Eq. [1| explicitly
or implicitly. The patch-based models [29], [30], [52], for
example, characterize a low-rank nature of image structures
or textures over non-local image patches. It is possible
for them to produce better decomposition results but the
performance is at the expense of searching local similar
patches. Besides, the frequency filters, transformed domain
analysis [53], and sparse representation techniques [54] are
also proposed for structural and textural analysis, while the
performance is generally limited in some typical cases and
not universally applicable in many practical applications.
In addition, it has also been witnessed that some existing
methods [55] strive to decompose an image into more than
two basic components — for example, structures, textures,
and random noise. Despite their different forms, they share
a similar assumption of image structures and textures as
listed in Tab. [1l and 2l More detailed discussions of them
are out of the scope here. The reader is also referred to
the related research points for more theoretical analysis and
their internal connections. It is worth noting that it is still a
fertile research point to explore more advanced models for
image structure and texture analysis.

3 PRoOPOSED METHOD

In this section, we further analyze the characteristics of
image structures and textures and propose a generalized
framework for image structure-texture decomposition. The
model is based on a semi-sparsity-inducing regularization
for structural analysis. We interpret that such a model is
preferable to produce better image decomposition results in
accordance with different textural analysis models.

3.1 Observations and Motivations

We have discussed several established image structure and
texture analysis methods and highlighted their strengths
and limitations for image decomposition applications. To
further elucidate their properties, we first take into account
an example in [2} where a natural image is given with the
structural component formed by singularities, sharpening
edges, polynomial-smoothed surfaces, and the textural com-
ponent composed of various characteristics spanning from
textural patterns, scales, and directions to amplitudes.
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Figure 2. An illustration of the characteristics of natural image structures and textures. The input image signal (Black) along a row is plotted with the
decomposed structures (Blue) and textures (Red) based on the proposed method. It is clear that the structural part consists of some strong edges,
piece-wise constant and polynomial smoothing surfaces, while the textural part contains different levels of oscillation or repeated details.

It is always expected for an image decomposition to
ideally distinguish the structural and textural parts. But, it
is a challenging problem due to the facts: (1) the sharpen-
ing edges (singularities) and oscillation patterns are highly
intertwined for their high-frequent nature, but the former
always belongs to image structures, and the latter is mostly
attributed to image textures, (2) the piece-wise constant
and polynomial smoothing surfaces may coexist in image
structures, but they have very different properties and it is
difficult for a simple model to capture their characteristics
simultaneously, and (3) the textural part may be exhibited
in various forms which are not adequate for a simple model
to identify them mathematically. In summary, a plausible
image decomposition method should be able to distinguish
the three-fold characteristics of signals:

o Piece-wise constant or smoothing surfaces: Many
natural or synthesized images have visual objects
with homogeneous regions consisting of piece-wise
constant and smoothing surfaces simultaneously. It is
necessary for image decomposition methods to have
the capacity of representing and extracting them
without introducing artifacts such as staircase results
in the polynomial-smoothing surfaces.

e Sharpening edges/singularities: The discontinuous
boundaries between homogeneous objects give rise
to sharpening edges or singularities of an image,
which is important for visual understanding and
analysis. An effective image decomposition model
should be able to precisely preserve these features
without introducing blur artifacts, and distinguish
these sharpening edges and singularities from large
oscillating texture

o Coarse-to-fine oscillatory details: The characteristics
of oscillatory details can be complicated because
of the diverse patterns, multiple directions, varying
amplitudes, and coarse-to-fine oscillation scales. It
is crucial for an image decomposition method to
capture these various characteristics and distinguish
them from sharpening edges and singularities.

1. The assignment of singularities may depend on the appropriate
semantic scale of the interested visual information.

As verified in Fig. P} the key point of image structure-
texture decomposition is to distinguish the three types of
signals while maintaining a fine balance. The dilemma also
exists in many existing methods in Tab. [I] and Tab. [2]
Structure-aware filters, for example, are capable of keeping
main structures but they do not well distinguish sharp-
ening edges and large oscillating textures. The TV-based
regularization is proposed to identify the structural part
with piece-wise constant and sharpening edges, while it
may result in stair-case artifacts in polynomial-smoothing
surfaces [3], [8]], [10]. Higher-order TV extensions [25],
alleviate the stair-case artifacts, but they cannot get rid of
blurry edges. The textural analysis models perform better
textural results with appropriate structural models but they
may still have problems in decoupling the coarse-to-fine
textures. The L' , , G-norm [3], and H ! spaces
help to characterize large-scale oscillating textures, while
the performance is somehow still limited in complicated
textural patterns and they may still cause side-effects such
as over-smoothing results around strong edges.

3.2 (Semi)-Sparsity Inducing Regularization

“Sparsity” prior knowledge has been extensively studied
in many signal and image processing fields, for example,
sparse image recovering sparse representation [59],
compressed sensing [60], and so on. It has shown that
Lo norm regularization can be used as a favorable and
powerful mathematical tool to identify sparsity-induced
priors because of the capacity in capturing the minority of
key features (archetypes) of signals. In many linear system
backgrounds, “sparsity” priors can be posed into a Ly quasi-
norm regularized optimization model with the form,

m&n@(u)-FOéHHUHOa ()

where ®(u) is defined in a proper function space modeling
the forward process of a physical system. The second term
provides a “sparsity” constraint under a linear operator
with a positive weight «. The notation |-||, is the so-called
Lo quasi-norm denoting the number of non-zero entries
of a vector, which provides a simple and easily-grasped
measurement of sparsity.
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b) ROF [10] (c) TV-L! [56]

(i) TGV- L1

g) BTF

h) RTV \|

(d) TV-G [3]

(e) TV-H [15]  (f) TV-G-H [57]

() TGV-H[32] (k) HTV-H [32] l) Ours

Figure 3. Visual results of image structures in case of piece-wise constant structures and large oscillating textures. (a) Input, (b) ROF (A =
0.005, «=0.001) [10], (c) TV-L' (A=0.003, a =0.0045) [56], (d) TV-G (A=0.003, «=0.0005, v =0.0002) [3], (&) TV-H (A=0.002, a:=0.005) [15]

(f) TV-G-H (X = 0.004, @ = 0.001, v = 0.002) [57], (g) BTF (o = 5.0, iter = 4) [23], (h) RTV (A = 0.01, 0 = 3.0) [5],
0.0008, 8 = 0.0008) [27], (j) TGV-H (A = 0.004, « = 0.01, 8 = 0.03) [32], (k) HTV-H (X = 0.003, a = 0.006, 8 = 0.0015) [32], and (I)

(i) TGV-L' (A =0.0007, o« =
Ours (A =

0.005, «=0.006, 3=0.001). For fairness, all methods are fine-tuned for a similar level of smoothness. SSR(Cy/C1), (b)~(j):17.24 (0.1138/0.0194),
17.16 (0.0301/0.0340), 17.15 (0.1035/0.0075), 17.18 (0.0364/0.0316), 17.11 (0.1298/0.0059), 17.05 (0.0369/0.0727), 17.17 (0.0427/0.1089), 17.04
(0.0645/0.0609), 17.06 (0.0717/0.0627), 17.07 (0.0560/0.0829), 17.12 (0.0203/0.0022). (Zoom in for better view.)

Many sparsity-inducing models can be understood in
the context of Eq. Q The inverse imaging reconstruction,
for example, takes into account ®(u) = ||Au—f ||2 where
A is observation matrix and H = V is the gradient oper-
ator because the Ly norm gradient regularization help to
restore piece-wise constant image surfaces. This idea has
also drawn great attention in some filtering techniques [14],
because it helps to preserve the minority of singularities
and discontinuous sharpening features of signals. Recently,
such an idea is also found in image structure restoration ,
where a sparsity-induced regularization is introduced for
image structure analysis.

Despite the progress in preserving discontinuous and
sharp edges, the occurrence of notorious stair-case artifacts
is not negligible in existing sparsity-inducing models. To
address this contradiction, there has been considerable at-
tention towards using regularization techniques in higher-
order gradient domams, in particular focusmg on TGV-
based methods , and TV-TVZ2-based regulariza-
tion [25 More recently, a so-called semi-sparsity model
has been also explored for smoothing filters , [42], in
which the established Lo regularization in higher-order
gradient domains allows simultaneously fitting the regions
coexisting sharp edges and polynomial-smoothing surfaces.
Motivated by the edge-preserving property of L( regular-
ization [14], and higher-order methods [21]], in
avoiding stair-case artifacts, we combine them in a unified
framework and illustrate that they are also universally ap-
plicable for image structural and textural analysis.

Formally, we recall the semi-sparse notations and show
how to identify the semi-sparse property in the higher-order
gradient domains effectively. Without loss of the general-
ity [21]], we say u is a semi-sparse signal if its higher-order
gradients satisfy the following relationship,

{HV”‘IUIIO >N,

V™ ully < M, ©)

where V" is the n-th (partial) differential operator, and
M,N are some appropriate natural number satisfying
N > M. The merit of Eq. El is easy to understand, that is,
the non-zeros entries of V™u, measured by Ly quasi-norm,
is much smaller than that of V"', which occurs if and only
if V" is much more sparse than V"' u. Taking into account
a n degree piece-wise polynomial function for example, it
is easy to verify that the n-th order gradient V"u is sparse,
while it not holds for the k-th (k < n) order gradient V¥u. It
is also clear that a polynomial-smoothing signal with degree
d < n satisfies Eq. B essentially.

3.3 Generalized Semi-Sparse Decomposition

It has shown in the work that natural images always
exhibit notable semi-sparsity properties when attributing
the characteristics of higher-order gradient distributions.
Notice that image structures could characterize more ob-
vious semi-sparsity properties, as they can be effectively
represented as a combination of a series of piece-wise con-
stant regions, polynomial-smoothing surfaces, and sharp-
ening discontinuous edges. This observation motivates us
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() TGV-L! [27]

() BTF

(h) RTV

() TGV-H (k) HTV-# (I) Ours

Figure 4. Visual results of image structures in case of piece-wise constant/smoothing structures and large oscillating textures. (a) Input,
(b) ROF (A = 0.0035, « = 0.001) [10], (c) TV-L' (A = 0.001, a = 0.002) [56], (d) TV-G' (A = 0.003, @ = 0.0007, v = 0.0002) [3], (e)

TV-H (A = 0.002, a = 0.003) [15], () TV-G-H (A = 0.004, « = 0.008,
(A = 0.015, o = 4.0) [B], (i) TGV-L' (A = 0.001, a = 0.002, 8 = 0.002) [27], () TGV-H (A = 0.002, a = 0.05, 8 = 0.04)

= 0.008) [57], () BTF (¢ = 5.0, iters = 7) 23], (h) RTV
32], (k) HTV-

H (A = 0.002, o = 0.0045, B = 0.004) [32], and (I) Ours (A = 0.004, o = 0.007, 3 = 0.002). Quantitative results with STR(Co/C1) metrics,
(b)~(j): 18.88(0.1220/0.0158), 18.89(0.0365/0.0204), 18.90(0.1101/0.0259), 18.89(0.0486/0.0429), 18.84(0.0444/0.0500), 19.01(0.0373/0.0834),
18.97(0.0539/0.0195), 18.67(0.1003/0.1742), 18.86(0.0320/0.2002), 18.87(0.0431/0.1421), 18.95(0.0292/0.0188). (Zoom in for better view.)

to use semi-sparsity priors to capture structural features
and avoid blurry and stair-case artifacts. Specifically, we
propose a general semi-sparsity framework based on the
Lg regularization in higher-order gradient domains,

n—1
minT(v)JrakZ"V’“u"1+an||v"u||0, st. u+v=7f (4
=1

u,v
k

where @ = [ag, a9, -+ ,ay] are the positive weights. The
semi-sparse regularization part advocates that the k-th (k£ <
n) order gradients V¥u have a small measure in L! space,
and the highest-order gradient V"u tends to be fully sparse
in views of the polynomial-smoothing property of image
structures. Differing from the semi-sparsity smoothing [21],
a new semi-sparse regularization is introduced hereﬂ Aswe
illustrate hereafter, such a semi-sparse regularization com-
bined with an appropriate structural analysis model 7 (v)
enjoys better fitting performance in preserving polynomial-
smoothing surfaces and sharp edges.

In principle, 7 (v) in Eq. ] can be arbitrarily chosen from
Tab. EI However, the textural part v, as illustrated in Fig.
[} varies from image to image with diverse and multiple
forms spanning from textural patterns, scales, directions to
amplitudes, and so on. It is usually difficult to discriminate
and describe them independently in a simple model. In
this paper, we suggest using the L!-norm to model image
textures due to its simplicity and effectiveness. Firstly, it has
been demonstrated in several TV-L' models [19], that
L' space allows representing image textures with a vari-
ety of patterns, including coarse-to-fine scales, anisotropic

2. In the semi-sparsity smoothing model the k-th (k < n) order
gradients V*u is assumed to be close to that of image f in L? space.

directions, varying oscillating amplitudes frequencies, and
so on. Secondly, the contrast of image structures is also
important information that needs to be preserved during
the decomposition process, however, it is not adequate for
many decomposition methods such as the Ly-norm model.
Instead, 7 (v) in L' space has been proven to have the
capacity of preserving the contrast information even in large
oscillating textural cases. Moreover, the L' data fidelity
provides a fine balance between effectiveness and efficiency
due to the simple form and numerical implementation, and
affordable computational cost. As demonstrated in experi-
mental results, such a semi-sparse regularization combined
with L' data-fidelity enjoys better fitting performance in
polynomial-smoothing surfaces and sharpening edges.
Furthermore, the choice of n is also an important factor
for the image composition model of Eq.[d} which is in nature
determined by the property of image structures. For natural
images, it has been shown in that n = 2 is enough
to give plausible filtering results in practice. Recalling the
similar properties of image structures and the observations
in Sec. we here choose n = 2 as the highest order for
semi-sparsity regularization, reducing Eq. 4|into the form,

muin)‘”u_f”l+a||vu||1+6||vzu“0’ ®)

where, A\, o, 5 are positive parameters. Notice that A is not
necessarily varying in theory, for example, fixing A = 1,
and it is introduced here to rescale Eq.[5into an appropriate
scale for a more accurate numerical solution. Despite the
simple form, it enjoys some startling properties for image
structure-texture decomposition. We additionally discuss
the advantages and benefits of Eq. [f| compared with many
existing methods.
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On the one hand, it has been shown that high-quality
image decomposition results are not easy to guarantee in
many existing methods, including structure-aware filters
[13], [14], TV-based regularization [10] and higher-order
extensions [27], [32] since they either give over-smoothing
results in spikes and sharpening edges — taking total
variation (TV) method [10] for example, and/or introduce
stair-case artifacts in polynomial smoothing surfaces such
as the famous Lo-norm gradient regularization [14]. On
the other hand, several textural analysis models [3]], [15],
[31] faithfully decouple the large oscillating patterns, while
they still suffer from over-smoothing problems, especially
around sharpening and discontinuous edges. In a nutshell,
many existing methods have limitations in recovering image
structures that coexist with sparse features and polynomial-
smoothing surfaces, especially in large oscillating textural
situations. It is actually difficult for them to weigh a bal-
ance to avoid two aspects of deficiencies simultaneously.
In contrast, our semi-sparsity model as demonstrated in
the below experiments retains edge-preserving properties
in strong edges and spikes, and also produces more ap-
propriate results in polynomial-smoothing surfaces, giving
a so-called simultaneous-fitting ability in both sharpening
and smoothing regions. Moreover, the textural analysis in
L* space also enables us to process image decomposition in
large oscillating textures. We conclude that it provides a way
to deal with both cases in high-level fidelity, which makes it
essentially different from the traditional filtering methods.

3.4 Differing from Existing Higher-order Methods

There are two existing works highly related to the proposed
semi-sparsity regularization model, in particular, the total
generalization variation (TGV) [42] and high-order total
variations [25], [26]], as well as many of their extensions [27],
[32], [40]. It is necessary to discuss them and show their
differences both theoretically and experimentally.

Mathematically, the TGV-based model [42] suggested the
following regularization,

TGV(u) = min o [|Vu — wl|; + as[E(w)ll;,

where a1, ap € R are weights, and £(w) = 3 (Vw + V)
denotes the distributional symmetrized derivative. Such a
regularization is always combined with different textural
analysis functions [27], [32] to reduce the staircase artifacts
in many total variational (TV) methods.

The TGV-based method is essentially a second-order
regularization model by introducing an auxiliary variable w.
Notice that Vu ~ w when a1 — 0o, while the exact equality
is not attainable in practice, thus there exists a discrepancy
between Vu and w, in particular around sharpening edges.
In this case, w can be viewed as a smoothing approximation
of Vu. Notice also that the second term asl|{(w)]|; also
has a smoothing role when imposing a regularization for
w, which may lead to over-smoothing results in sharpening
edges of u. The defect may be alleviated by increasing o
and reducing a», but it is not easy to find a balance in
case of varying scales of oscillating textures. The intuitive
conclusion is also observed in our visual comparisons. As
illustrated therein, it is usually difficult to find a group of «
and f3 to preserve the strong edges precisely.

8

The TV-TV? regularization is another higher-order
method that has drawn attention in image restoration [25],
[26], which is also proposed as a higher-order extension of
the TV regularizer to overcome the staircase artifacts. By
definition, the TV-TV? regularization has the form,

TV-TVA(w) = mina | Vall, + a2 72,

The first term «1||Vu||; is a TV-based regularization that
encourages piece-wise constant v, and the second term
a2 || V2ul|, plays a similar role but acts on the second-order
gradient Vu. The TV-TV? regularization helps suppress
staircase artifacts since Vu is imposed to be piece-wise con-
stant. However, it is also known that the TV regularization
would cause blur effects around sharpening edges, and the
second-order regularization would further strengthen the
smoothing effect. In summary, the TV-TV? regularization
indeed helps reduce the stair-case artifacts but the blur
results in strong edges are also not avoidable, especially in
cases of large oscillating textures or strong noise. Essentially,
it has a similar property as the TGV regularization.

The semi-sparsity regularization inherits the advantages
of higher-order methods in terms of mitigating stair-case
artifacts. In parallel, the inclusion of an Lo-norm constraint
in higher-order gradients also enables the restoration of
sharpening edges without compromising the fitting ability
of higher-order models in polynomial smoothing surfaces.
The analysis of image textures in L' space further enhances
the capacity to decompose large oscillating patterns. In
summary, the proposed method combines the advantages
of both TGV and TV-TV?, and manages to overcome their
weakness, allowing image decomposition for a broad spec-
trum of natural images.

4 EFFICIENT MuLTI-BLOCK ADMM SOLVER

The semi-sparsity image decomposition model in Eq. [f
poses challenges in direct solution due to the non-smooth
L'-norm and non-convex nature of Ly-norm regularization.
It has proved that such a minimization problem can be
approximately solved based on several efficient numerical
algorithms such as iterative thresholding algorithm [61],
half-quadratic (HQ) splitting technique [62], alternating di-
rection method of multipliers (ADMM) [24], [63]], and so on.

We here employ a multi-block ADMM algorithm to solve
the proposed model because it is applicable for a type of
non-convex minimization problem [63]], [64]. Moreover, it
is easy to implement and has a low computational cost
even for large-scale problems. For completeness, we briefly
introduce the multi-block ADMM algorithm with the M
separable objective functions and /N constraints,

I{I;i_l}lfl (1) + fa(z2) + -+ far (zpr)
s.t. A1,1£C1 + ALQ.’L'LQ + -4 AI,M'%'M =b ©)
Anaiz1 + An2eno+ -+ An mzv = by,

where z; € X; C R™ are closed convex sets, the coefficient
matrix A, ; € RP*™ b, € R? and f; : R™ — RP are some
proper functions.
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The multi-block ADMM algorithm is a general case of
the ADMM algorithm. Accordingly, we rewrite the Eq. [|in
its augmented Lagrangian form,

N

M M
Ep (X, Z) = Z fi (CEZ) — Z <Zn, Z An,ixi — bj>
i=1 =1

n=1

N v 2 (7)
+2_:1 (p; 2147”331 —b; ) ;

where z = {z1,---,2zy} is the Lagrange multiplier and
p = A{p1,p2-- ,pn;p; > 0} is a penalty parameter. The
augmented Lagrangian problem can be solved by iteratively
updating the following sub-problems:

k+1 ._ . k k. k
x{"" = argmin, L, (a:l,a:Q, e XN 2 )
k+1 . . k+1  k+1 k41 Lk
xy; = argmin, L, (ml N N SV V- )
N
k+1 . _k k+1
Zp Tt =2, — Pn Z Az — b
n=1

(8)

Now, it is easy to reformulate the proposed semi-sparsity

image decomposition model of Eq. [f] into a three-block

ADMM model. Specifically, we consider the discrete case of

Eq.[land formulate it as a constrained optimization problem
by introducing the variables h, g and w,

min  Allu—f|; + o|Du|, + B[|Lul,,
{u7h79’w}
st. u—f=h, Du=g, Lu=w,

where D ={D,;D,} and L = {L,; Lyy;Lys; Ly, } are the
discrete differential operators in the first-order and second-
order cases along the z- and y- directions, respectively.
The augmented Lagrangian form of the three-block ADMM
model of Eq. [9has the form,

£, (us hy g, wiz) =Nkl +allgl, +8llwll,
p
(a1 u—f—h) + 5 |lu—f~hl;
~ (z2,Du—g) + 7 | Du—gl;

~ (23, Lu—w)+ 2 |Lu—wlj,

(10)
where z = {z1,22,23} and p = {p1,p2,p3} are the
dual variables and penalty parameters adapted from Eq.
[/ Clearly, the problem Eq. [10] can be solved based on the
iterative procedure presented in Eq. [§] The benefit of Eq.[9]
is that each sub-problem can be efficiently solved even for
a large-scale problem. We briefly explain the sub-problems
and show their property for efficient solutions.

Sub-problem w : The augmented Lagrangian objective
function Eq. [10]reduces to a quadratic function with respect
to u when fixing the other variables, which gives rise to an
equivalent minimization problem,

2 2
min p; u—f—h,—ﬂ + p2 Du—g—ﬁ
w P12 P2 |2
T (11)
+ p3 Lu—w— -2 +c,
P3 |l2

9

where c is a constant not related to u. The optimal solution
of[I0]is then attained by solving the following linear system:

(p114p2D" D+ psL  L)u =p1 (f+5)+p2D" g+ psL" w
—+ zZ1 +DTZQ+LTZ3,

12)
where I, DT and L7 are identity matrix and the transpose
of D and L. Due to the symmetric and positive coefficient
matrix, Eq. [I2] can be directly solved using several linear
solvers, for example, the Gauss-Seidel method and precon-
ditioned conjugate gradients (PCG) method. However, these
methods may be still time-consuming when the problem
has a large number of variables in our cases. Notice that the
differential operators D and L are linear invariant operators,
it is possible to use fast Fourier transforms (FFTIs) to solve
Eq. 12| for further acceleration. It is possible to reduce the
computational cost significantly, in particular encountering
a large-scale problem such as millions of variables.

Sub-problems h and g: By analogy, the sub-problems
with respect to h and g have the forms

min Akl - (z1,u—f—h) + 5 Ju—f-hl3  (3)
&
2

It is known that the optimization problem of Eq. [13|and
is a typical L'-norm regularization minimization that
can be efficiently solved for the separable property. Specifi-
cally, we reduce them into a one-dimensional minimization
problem and estimate each variable h; and g, individually,
giving the closed-form solutions,

minafgl, — (22, Du—g) + T [Du—gll;  (14)

h=Su—f+2h 2,

2 (15)
g= S(Du+—2, —),

P2 P2

with the soft shrinkage operator defined as:
S(wi, ) = sgn(w:) - (il —7)+

where sgn is a sign function, and (a)y is defined as 0 if
a < 0 and a otherwise.

Sub-problems w: Similarity, the sub-problem with re-
spect to w has the form,

min §l|wlly — (25, Lu—w) + 2 [Lu—w|}  (16)

which is a Lo-norm minimization problem and has the

same separable property as L'-norm minimization with

each individual variable given by the closed-form solution

w = HLut 2, 2

p3 P3

where H(z, ) is the hard-shrinkage operator defined as:

17)

Oa ‘ T; I < T,
otherwise.

H(l‘i,T) = {

Ty,

The dual variables 21, z3, and z3 are updated as follows:
z1 = z1 + pi(u—f—h),
Zo = 22 + p2(Du—g),
z3 = z3 + p3(Lu—w).

(18)
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Algorithm 1 ADMM Solver for Semi-sparse Model
1: Input: signal/image f, parameters A, , 3, and weights
P1, P2, P3;
2: Initialization: u® < 0; ho,go7 w® « 0; z?, zg, zg 0,
and k< 0;
while not ||u* " —ukHz/Hu*Hg <edo
Solve Eq.[12|for u**! with the FFT acceleration;
Solve Eq. [13|for A" with soft-shrinkage operator;
Solve Eq.[14]for g**! with soft-shrinkage operator;
Solve Eq. |16|for w**! with hard-shrinkage operator;
Update Eq. [18|for Lagrange multipliers z#7':
z’i*i =28+ p1(uF — f—h"),
" =2+ pa(Dut—gh),
A = 2k 4 py(Lub —wh);
9: Incrementk:k=Fk+1,
10: end while
11: Output: the structural part u.

The three-block ADMM algorithm alternatively solves
the sub-problems and updates the Lagrange multipliers
until the given stop criteria are met, which leads to an
iterative procedure for the proposed image decomposition
model. Since all sub-problems have closed-form solutions in
low computational complexity, the challenging non-convex
Lo-norm regularized problem is empirically solvable even
under a large-scale of variables. The numerical results will
further demonstrate the effectiveness and efficiency of the
multi-block ADMM algorithm.

The convergent analysis of multi-block ADMM solver
can be directly built from the general ADMM case [64].
Notice that Eq. [# and Eq. 5| have the non-convex Lg-norm
regularization, it is not easy to construct a convergence
analysis. Recently, it has been shown in the study [65] that
the ADMM algorithm is also applicable for a wide range
of non-smooth and non-convex problems. For example, the
convergent analysis can be built when one or more of f;
in Eq. [f] is lower semi-continuous with the remainders are
the Lipschitz differentiable functions, which is our case and
claims the convergence of Algorithm [I} as the first and
second terms in Eq. 9] are convex L'-norm with Lipschitz
continuous property, and the non-convex Ly norm with has
lower semi-continuous property. Actually, it is also easy to
see that each sub-problem convergent to its criteria point,
which makes it possible to find a Cauchy sequence of the
solution {u*}2° . Here, the sub-problem of Eq. [16]is Lo-
regularization and the iterative hard-thresholding operator
is convergence under the Restricted Isometry Property (RIP)
condition [61]. The reader may refer to [63]], [65]], [66] for
more convergence details.

5 EXPERIMENTAL RESULTS

In this section, we further demonstrate our semi-sparse
model and its high-quality decomposition performance in
scenarios of images composed of different structures and
textures. We start the discussion with the interpretations of a
new dataset, parameter configurations, compared methods,
and so on. A series of numerical results are also presented
and compared with the state-of-the-art methods both quali-
tatively and quantitatively.
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The error curve and energy of ADMM algorithm.
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Figure 5. The (log) error curve and energy of u* during the ADMM
iterative procedure.

5.1

For the sake of comprehensive analysis, we first collect a
new dataset for image structure and texture decomposition.
This dataset has 32 images chosen from the community
of image decomposition [5], [23], [67]. As shown in the
later experiments, the dataset consists of a set of images
that contain various structural patterns such as sharpening
edges, piece-wise constant and smoothing surfaces, as well
as diverse textural patterns with large oscillating values,
multiple scales and directions, and so on. The inclusion of
such images allows us to thoroughly assess the performance
of our method across different types of visual content.

To ensure a systematic comparison, we elaborate on our
semi-sparsity model with its superior performance against
a series of image decomposition methods. Specifically, we
compare the model with the well-known ROF model [10],
TV-L! [56], TV-G [3], TV-H [15], TV-G-H [57], BTF [38],
RTV [5], TGV-L! [27], TGV-H [32], HTV-H [32], which
cover most of the structural and textual models listed in Tab.
and Tab. 2} As illustrated hereafter, we will consider three
typical scenarios consisting of different image structures and
textures: 1) piece-wise constant structures with uniform but
large oscillating textures, 2) piece-wise smoothing structures
with multi-scale oscillating textures, and 3) a mixed case
with complex structural and textural patterns.

Dataset and Compared Methods

5.2 Parameters and Configurations

Recalling the model in Eq. i and [B} A, o, and 3 control
the amount of smoothness penalty applied to output image
structures. As aforementioned, A is introduced to rescale
Eq.5|into an appropriate scale, depending on the precision
of discrete images and the threshold operators in Eq.
and For 8-bit color imagesﬂ we empirically found that
A € [0.0001,1.0], € [0.0001,0.1] and S € [0.0001,0.1]
are always suitable for a high-accuracy numerical solution
when taking into account weights p; =1(i =1, 2, 3) without
any specification. The parameters may vary from image to
image depending on the density and oscillating level of
image textures. The above configurations provide a good
trade-off between accuracy and computational efficiency.

3. All images are normalized into the range [0, 1] in our experiments.
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(e) Close-ups

(f) «=0.01, 3=0.02

(d) a=0.03, 3=0.01

(9) a=0.02, 3=0.02

(h) =0.03, 3=0.02

Figure 6. Visual comparison of image structures with different parameters. A = 0.01 is fixed here and « is gradually increased in each row to give
more and more smoothing results, while a similar smoothing trend is also observed with increasing 8 in each column. Notice that & mainly controls
the global smoothness of output structures, and 3 tends to smooth the local features such as staircase results in polynomial smoothing surfaces.

For clarity, we show the role of A, @ and 3 in determining
the characteristics of output image structures. As illustrated
in Fig. [} we fix A=0.01 and compare the output structures
with varying a and /3. The output image structures in each
row tend to be more and more smoothing when increasing
o, but the stair-case artifacts can not be avoided effectively
in some poly-nominal smoothing regions, as o mainly
controls the first-order gradient to be piece-wise constant.
In contrast, the staircase artifacts can be alleviated when
increasing (3 in each column. This conclusion also provides
the guidance for choosing A, o, and § in practice — that
is, v is first adjusted to produce acceptable decomposition
results and then fine-tuning 3 to reduce the remaining stair-
case artifacts to reach better local results.

To demonstrate the efficiency of ADMM iterative proce-
dure, we show its convergence based on the relative error

QF = Hukﬂ—ukHz / ||u*||§ Notice that an “exact” solution
u* is not available here, we instead take an extremely
tight stop tolerance, for example, ¢ = 107'¢, and treat
the output as u* for evaluation. Afterward, the algorithm
is rerun under the same configuration with a smaller stop

criterion e = 1.0 x 10712 in Algorithm We also take into

account the energy E,,» = ||u” H; to show the decomposition
performance. The error curve (), and energy E,, are plotted
in Fig. B} As we can see, both of them converge quickly to
the stable solution and it roughly needs 20 ~ 50 iterations
to produce high-quality image decomposition results with
appropriate parameters.

Benefiting from the multi-block ADMM procedure, the
proposed model can be solved efficiently. As shown in
Algorithm |1} the process has three main phases: linear
system solver, soft/hard-threshold shrinking operators, and
the update of Lagrangian multiplier in each iteration. The
computation is dominated by the linear system solver, while
it can be also efficiently computed with the FFT acceleration
because both the FFT and its inverse transform have the
computational cost of O(Nlog(N)), where N is the number
of pixels of an image. The threshold shrinking operator can
be computed independently for their separable property,
and the Lagrange multiplier can be also updated in-place
efficiently. As a result, the number of iterations controls
the total time of the proposed method. The quantitative
analysis of computational cost is also compared with the
other methods in the next section.
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() TGV-H

(i) TGV-L! [27]

12

(k) HTV-H

Figure 7. Visual results of image structures in case of hybrid and complicated textural and structural components. (a) Input, (b) ROF (A =
0.0045, a = 0.001) [10], (c) TV-L' (A = 0.001, = 0.002) [56], (d) TV-G (A = 0.003, = 0.0006, v = 0.0004) [3], (¢) TV-H (A = 0.001, a =
57],

0.01) [15], (f) TV-G-H (A = 0.004, e = 0.008,y = 0.005)

(A=0.001, @ =0.002, 8 =0.002) [27], (j) TGV-H (A =0.002, = 0.045, 8 = 0.025) [32], (k) HTV-H (A=0.004, a = 0.006, 3 =0.0015)

(9) BTF (o = 7.0,iter = 3) [23], (h) RTV (A = 0.012,¢ = 3.0) [5], (i) TGV-L!

[32], and (1)

Ours (A =10.002, « =0.005, 8 =0.001). Quantitative results with the ST R(Co/C1) metrics, (b)~(j): 22.84 (0.1908/0.0918), 22.83 (0.0550/0.1161),
22.89 (0.1771/0.0954), 22.78 (0.0392/0.0424), 22.81 (0.0416/0.0326), 22.88 (0.0271/0.0526), 22.85 (0.1371/0.0447), 22.84 (0.0077/0.1087), 22.78
(0.0370/0.1994), 22.85 (0.0507/0.0869), 23.01 (0.0774/0.0644). (Zoom in for better view.)

5.3 Structure Extraction Performance

To demonstrate the benefits of the proposed method, we
conduct a comparative analysis of the decomposed results.
Firstly, we introduce image structure-to-texture ratio (STR)
as an objective index to evaluate the smoothness of output
structures, which is defined in decibels (dB) as:

2

l[ull

10 29
o]l

where u and v represent the decomposed image structures
and textures, respectively. The STR index has the same

STR = 101log

definition as signal-to-noise (SNR) in our case when treating
v = f — u as noise. For fairness, all compared methods are
either configured with a greedy strategy to produce visual-
friendly results or fine-tuned by hand to reach a similar
smoothing level of image structures evaluated by the STR
index. In what follows, we show the structural decompo-
sition results and compare them in different scenarios of
image structures and textures.

In Fig. 8] we show the decomposition structures for the
first type of image. In this situation, it is usually difficult
for traditional structure-aware filtering methods , [14] to
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(b) Structure u

(c) Texture v

L b= !
|

(d) Gradient Vu (e) Color-map

Figure 8. Visual illustrations of the correlation between image structures u (gradient Vu) and textures v. Given (a) input images f, our method
produce (b) structures u and (c) textures v = f — u and (d) gradients Vu, which are also plotted in (e) in Red and Green to indicate their tiny
overlap regions in Blue. The correlation coefficients Cy = 0.001 and C; = 0.001. (c)~(e) are scaled for better view.

give high-quality results, because of the presence of large
oscillating textures. The TV-based models such as TV-G' [3],
TV-L1 and TV-H [15], in contrast, demonstrate their
reasonable performance in achieving fine-balanced decom-
position results. The benefits mainly arise from the capacity
of TV space in capturing piece-wise constant structures in
spite of large oscillating textures. The special-designed BTF
method [23] and RTV model [5] are known for their ability to
persevere strong edges when removing large oscillating tex-
tures. Despite much better performance, they may introduce
slightly blurry effects around strong edges, in particular, the
BTF method for the nature of using local spatial weights
to suppress periodic textures. Notice also in Fig. [B] that the
RTV algorithm may encounter difficulties when removing
(white) spikes next to strong edges. The higher-order TGV-
‘H and HTV-H models exhibit effective removal of large
oscillating textures but suffer from noticeable degradation
in sharpening edges. This partly arises from the fact that
the TGV regularization tends to penalize the second-order
gradients more than the first-order case, leading to a loss of
edge fidelity. In contrast, our method receives comparable
results in removing large-scale oscillating textures with the
best performance in views of edge fidelity.

We continuously analyze the second type of images by
considering piece-wise constant and smoothing surfaces in
structures, and multi-scale oscillating patterns in textures.
As shown in Fi the TV-based ROF model [10], TV-
G [3] and TV-L1 [45] show the ability to decouple the large
oscillating textures in piece-wise constant backgrounds but
they suffer from different levels staircase effects in the
polynomial-smoothing (face) surfaces. In this scenario, the
BTF method gives a similar result as the TV-based methods
with weak stair-case artifacts, but the over-blurring effect
still exists in sharpening edges. The RTV model [5] performs
much better results than other existing methods, achieving
minimal staircase effects in the face regions while preserving
strong edges effectively. The higher-order TGV-H and
HTV-H partially suppress the staircase effects but give

rise to serious blur degradation around strong edges, which
is similar to the case in Fig. El In contrast, our semi-sparsity
method demonstrates significantly improved performance
as the RTV model, receiving the desired smoothing results
in the face regions and comparable sharpening edges.

The advantage of our semi-sparsity method is further
demonstrated with a more challenging case in Fig. [/} The
test image here exhibits highly complex structural and
textural patterns, in particular, the oscillating textures are
anisotropic in directions, and have coarse-to-fine scales, and
varying amplifications, which poses a significant challenge
for many image decomposition models. In this case, existing
methods either reveal over-smoothing results in texture-
less regions or can not remove large oscillating textures,
especially in view of the sharpness of discontinuous bound-
aries among the piece-wise constant/smoothing surfaces.
Instead, the proposed semi-sparsity decomposition method
gives more preferable results in this complex situation with
more clean and smooth structural backgrounds and precise
sharpening edges. In summary, the proposed method is
applicable to a wide range of natural images and can suc-
cessfully preserve sharp edges while effectively eliminating
the undesired oscillating textures. The advance is mainly
beneficial from the leveraging of higher-order Ly regular-
ization for image structures and the measurement of image
textures in L' space.

5.4 Quantitative Evaluation

We further take a quantitative evaluation to compare the
proposed semi-sparsity model with the aforementioned
traditional methods. Notice that an objective evaluation
is always not difficult for image decomposition methods
because the ground truth of each component (structure or
textures) is not available in practice.

As suggested in the work [32], [47], the structural and
textural components show very little correlation for many
texture-rich images. Based on this idea, the correlation coef-
ficient of image structures and textures is then employed
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Tabl
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le 3

The correlation coefficient of STR metrics Cy/C; between image structure u /Vu (gradient) and image texture v = f —u on the new dataset, and
the computation time (s) compared with the state-of-the-art methods.

S%\f{?tl‘gc;?)) ROF [10']‘TV-L1 [56]TV-G [3]TV-H! [15]|TV-G-# [57]BTF [38]RTV [5]TGV-L* [27]TGV-H [32][HTV-H [32] Ours
Co(l) ] 0.1250 | 0.0464 | 0.0849 | 0.0462 0.0774 ] 0.1438 [0.0381] 0.0850 0.0666 0.0742  [0.0361
Ci(1) | 00528 | 0.0393 | 0.0400 | 0.0467 0.0779 | 0.1018 | 0.0442| 0.0987 0.0740 0.1041 [0.0239
Time (5) | 5.01 6.31 11.46 10.82 16.25 3.61 | 2.05 1820 22,61 1552  |12.94

to evaluate the quality of decomposed results. We here
verify their relationship in Fig. [§| (a)~(c). As we can see, the
preferred image structures and textures indeed reveal very
different characteristics in local regions. The relationship
is more clear when comparing the textures v with the
gradient map of structures Vu as indicated in Fig. 8| (c)~(d).
Specifically, we show their overlap regions in Fig. [§ (e) in
Blue, where the former textures v with the gradient map of
structures Vu are shown in Red and Creen. The conclusion
can be also understood from the characteristics of image
structures and textures discussed in Sec. Accordingly,
the strong edges and oscillating patterns are attributed to
different parts — the former belongs to image structures and
the latter occurs frequently in image textures. As a result,
image structures or the corresponding gradient — referred
as a representation of strong edges, has little correlation with
image textures, since they have tiny overlap in spatial.

The observation also motivates us to use the correlation
coefficient for quantitative evaluation. We here define the
correlation coefficient C(x, 1) = ——22=%)__ for variables

v/ var(z)var(y)

2 and y, where cov(-) and wvar(-) refer to the covariance
and variance of the counterparts, respectively. Specifically,
we denote Cy(u,v) as the correlation coefficient of image
structures u and textures v, and C;(Vu,v) as that of the
gradient of image structures Vu and textures v. Both of
them are adopted to indicate the correlation between im-
age structures and textures. For color images, each metric
is computed and averaged by channel. In general, C is
smaller than Cj due to the less correlation of the gradient
Vu and structure v. We here evaluate our semi-sparsity
model against the compared methods on the new dataset.
For fairness, all parameters in each method are fine-tuned
by hand to give similar smoothing structures, quantified by
the STR index. The correlation coefficients Cy and C; are
listed in Tab. |3} which are evaluated for each method under
the average structure-to-texture ratio STR = 19.23 for 32
images. As we can see, the proposed semi-sparse method
achieves the best results in both Cy and C'; cases.

In addition, we also compare the running time in Tab.
to show the efficiency of each method. To evaluate the
performance of each method thoroughly, the BTF [38] and
RTV [5] methods are ado ted from the off1c1a1 1mplemen-
tations, and the TV-L! and TGV-L! [27] algorithms
are carried out based on the primal-dual algorithm [16],
[45]. The numerical solutions for other methods are based
on a similar ADMM procedure in Algorithm [If with 100
iterations. Notice that the BTF has the computational
cost in several seconds depending on the filter kernel size.
The RTV is much faster for small-size images, while the

\\" T

3

AL

(b) 2"¢-order (c) 37-order

Figure 9. Visual comparison of image structural results with Lo-norm
regularization on the (a) second-order (STR = 18.94), and third-order
(STR=18.82) gradient domains, respectively.

time rises greatly due to the high computational cost of
linear solver in large-scale cases. The primal-dual algorithm
and ADMM procedure have a similar level of computation
in each iteration since they are all determined by the FFT im-
plementation in linear system solvers. The statistical results
Tab. |3| are estimated by processing a 512 x 512 resolution
color image. All the methods are implemented in Matlab
2015b without any optimization on a desktop PC with Intel
Core i7-9800X CPU 3.80GHz and 64G RAM.

6 EXTENSIONS AND ANALYSIS

There are some obvious extensions for our semi-sparsity
image decomposition model. Here, we briefly discuss two
potential directions: applying the higher-order (order n > 3)
Lg regularization for semi-sparsity priors, and replacing the
textural analysis model in other spaces.

6.1

In the previous, we have discussed the semi-sparsity model
with Lo-norm regularization in the second-order (n = 2)
gradient-domain in Eq. [ and [} while it is straightforward
to apply it in the higher-order (n > 3) cases. In general,
the choice n is determined by the characteristics of image
signals. As illustrated in semi-sparsity smoothing filter [21],
it is usually enough to produce acceptable results by set-
ting n = 2 for natural images, although a better result
could be attained when the regularization is imposed on
a higher-order gradient domain. The conclusion is derived
from the statistic distribution of higher-order gradients of
natural images. In the context of image structure and texture

Higher-order Regularization
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a Input

(b) RTV

(c) G space (Ours)
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(d) H~! space (Ours)  (e) L' space (Ours)

Figure 10. Visual comparison of structural decomposition results based on our semi-sparse model with the textural models in different spaces. (a)
Input, (b) RTV , (c) G space, (d) H~1 space, and (e) L' space. The structures are compared under STR metrics: 19.18 (top) and 22.10 (bottom),

respectively.

decomposition, we claim that this conclusion is still valid
for the similar propriety of image structures. Actually, the
structural component of an image tends to more sparse in
comparison of images when the textural part is decoupled
or removed from images.

We have shown the results in different scenarios of
image structures and textures by using second-order Lg-
norm regularization. For complementary, we compare the
results by imposing the L constraint on the third-order
gradient domain. As shown in Fig.[9] the given image tends
to have piece-wise constant and smoothing structures. In
both cases, image textures are obviously removed despite
that the tiny difference in the piece-wise smoothing surfaces.
This is also indicated that it is usually precise enough to
use second-order Lgp-norm regularization. This conclusion
is also demonstrated in other higher-order methods such as
the well-known TGV-based methods and TV-TV? reg-
ularized models [25], [26]. Another consideration of choos-
ing the 2"? order gradient for regularization is to reduce the
computation cost in many practical applications.

6.2 Textural Analysis in Different Spaces

In this paper, we have demonstrated the effectiveness of
the higher-order Lo-norm regularization with the textural
analysis in L' space. Apparently, it is possible to combine
such a regularization with different textural models.

As shown in Tab. 2} we have discussed several textural
models that can be integrated with our structural analysis.
The weak space G [3], for instance, allows capturing the

oscillatory components such as regular textures and random
noise. The original space G is equipped with the norm:

{H\/gvaQS Iv:divg},
LOO

where div is the divergence operator. However, the direct
numerical solution is unavailable for the involved L° space.
The problem is then relaxed, for example, by replacing G
space with G, = W~1P(1 < p < oc0). By analogy, we
combine the semi-sparse regularization with the G,, textural
analysis, giving a new semi-sparsity decomposition model,

|[v]lg = inf
g=(91,92)

min Mutdivg—fll5+vlglp +alVull,+8]V?ull,  (19)

where u = divg with g in LP space, and A, are positive
weights. The difference of Eq. from the original OSV
model is the utilization of semi-sparsity regularization
for structural analysis.

Another well-known structural analysis space is based
on the different specializations of Hilbert space H. As stated
in [47], there are several models can be deduced from
‘H space, including ROF model (H = L2) , TV-H!
(H=H™) and TV-Gabor method [17]. By analogy, it is
straightforward to combine our semi-sparsity structural reg-
ularization with them for preferable results. We introduce a
simple modification of the TV-H —1 model ,

min A||f—ullyy -+l Vul 4B Vll, o)

where || f —ul|3,_, = [|V (A1) (f—u)|2 dxdy for 2D cases.
In the TV-H ™" model, the oscillatory texture is modeled
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Table 4
The quantitative comparison of the STR metrics Co/C1 and running
time for the textural models in different spaces.

81151[1%13353) RTV [5] | G space | H™" space | L' space
Co({) 0.1444 | 0.1287 0.2145 0.0874
Ci({) 0.1174 | 0.0966 0.1383 0.0826

Time (s) 2.11 29.52 26.83 25.92

as the second derivative of a function in a homogeneous
Sobolev space, but the underlying smooth structure may be
not handled well in view of the property of TV regular-
ization, while our semi-sparsity extension in higher-order
gradient domains partially avoids this problem.

For a supplement, we compare the modified models
of Eq. and [20| with the original one in L' space. The
numerical solutions are also based on the similar multi-
block ADMM procedure in Algorithm [1| As shown in Fig.
we take two typical images into account and both of
them have large oscillating textures intertwined with piece-
wise constant and smoothing structures. Clearly, the textural
models in weaker space G and H~! tend to give similar
results as the one in L! space when combined with the
semi-sparsity higher-order L regularization, while the one
in H~! space reveals slight degradation in local structural
regions. An advantage of these modified models is that they
tend to preserve more local structural information when
compared with the cutting-edge RTV method in a similar
level of smoothness. Notice also that the textural model
in L' space generally produces better visual results with
more sharpening edges among the piece-wise smoothing
surfaces. This may be due to the fact that the weaker
space G and H ! tend to capture the periodical oscillating
details, while the underlying image structures and textures
could be in very complicated forms. As a result, they may
produce unexpected results around the irregular textural
parts, for example, causing blur edges nearby the non-
periodical textures. In contrast, the model in L' space is
more robust to these complex situations and this is also one
of the reasons that we model the textural part in L! space.
The conclusion is also verified in Tab. |4} where the textural
model in L' space has slightly better performance in both
quality and efficiency. Finally, we would like to mention that
the semi-sparsity higher-order regularization can be also
utilized for more complex image decomposition problems,
for example, the situation of structure, texture, and noise.
More exploration and discussion are out of scope here. The
reader is also referred to the work [3], [32], [33], [47], [49] for
more related details.

7 CONCLUSION

In this work, we have proposed a simple but effective
semi-sparsity model for image structure and texture decom-
position. We demonstrate its advantages based on a fast
ADMM solver. Experimental results also show that such
a semi-sparse minimization has the capacity of preserving
sharp edges without introducing the notorious staircase
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artifacts in piece-wise smoothing regions and is also applica-
ble for decomposing image textures with strong oscillatory
patterns when applied to natural images. Some avenues
of research for more complex decomposition models are
also possible based on the semi-sparsity priors, which are
leaving for further work.
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