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Semi-Sparsity for Smoothing Filters
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Abstract—In this paper, we propose a semi-sparsity smoothing
method based on a new sparsity-induced minimization scheme.
The model is derived from the observations that semi-sparsity
prior knowledge is universally applicable in situations where
sparsity is not fully admitted such as in the polynomial-smoothing
surfaces. We illustrate that such priors can be identified into
a generalized Lo-norm minimization problem in higher-order
gradient domains, giving rise to a new ‘“feature-aware” filter with
a powerful simultaneous-fitting ability in both sparse singularities
(corners and salient edges) and polynomial-smoothing surfaces.
Notice that a direct solver to the proposed model is not available
due to the non-convexity and combinatorial nature of Lo-norm
minimization. Instead, we propose to solve it approximately based
on an efficient half-quadratic splitting technique. We demonstrate
its versatility and many benefits to a series of signal/image
processing and computer vision applications.

Index Terms—Semi-sparsity priors, edge-preserving filtering,
image smoothing, image enhancement and abstraction, and mesh
denoising.

I. INTRODUCTION

ILTERING techniques, especially the feature-preserving

algorithms, have been used as basic tools in signal/image
processing fields. This favor is largely due to the fact that a
variety of natural signals and visual clues (surfaces, depth,
color, and lighting, etc.) tend to spatially have piece-wise
constant or smoothing property, between which a minority
of corner points and edges — known as sparse singularities
or features formed by discontinuous boundaries convey an
important proportion of useful information. On the basis of
this prior knowledge, many filtering methods are promoted
to have “feature-preserving” properties to preserve the sparse
features while decoupling the local details or unexpected noise.
The prevailing use of “feature-preserving” filtering methods
is also found in many applications, including image denoise
[1f], [2]], tone mapping, and high dynamic range (HDR) image
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compression [3]-[5[], details enhancement [3]], [4], [6], [7],
stylization [8]], [9], and so on.

In the literature, it has been witnessed that a number of
“feature-preserving” filtering methods have been proposed
under different research backgrounds. Despite the varying
forms and generalizations, they can be broadly divided into
two categories: local and global filters. In general, the output of
local filters is computed as a weighted sum of local neighbors
based on a pre-defined or computed weighted function, which
can be found in median filter [|10]], bilateral filter [S]], guided
filter 4], and so on. Due to the ease of implementation, local
filters have been widely used in many practical applications.
One bottleneck is that they may ignore the global attributes of
signal and may cause some unexpected effects, for example,
halo artifacts in image detail enhancement [5] and HDR image
compression [[11]. On the contrary, many global methods
are proposed under an optimization-based framework that
finds a globally optimal solution for signal/image filtering
problems. The classical approaches, including total variation
(TV) [12]], weighted least squares (WLS) filter [3]], [[13] and
Ly-norm gradient minimization [[7], to some extent, overcome
the defects of local methods with better filtering performance.
The success is, however, achieved at the much-increased cost
of solving large-scale linear or no-linear system equations,
which is always not negligible in practice even with the
recent endeavor in acceleration. Despite the great success,
there is still considerable interest to exploit more powerful and
efficient filtering methods to achieve more visual-appealing
smoothing results for different applications.

In the paper, we propose a semi-sparse minimization scheme
for a type of smoothing filters. This new model is motivated
by the sparsity-inducing priors used in recent cutting-edge
filtering methods [/7]], [14], [[15]. It turns out that sparsity priors
could help to pursue piece-wise constant filtering results and
they are particularly suitable for preserving the sparse features
(singularities and edges) existing in signals/images. Neverthe-
less, it worthy notice that sparsity priors may fail in the regions
coexisting sparse features and polynomial smoothing surfaces
(See Fig. 1). This failure, as interpreted hereafter, is largely due
to the fact that sparse priors may be no longer fully admitted in
the polynomial-smoothing surfaces, thereby leading to strong
stair-case artifacts when imposing sparse regularization in
these regions. In contrast, we illustrate that semi-sparsity priors
enjoy more favorable properties in simultaneously fitting both
sharpening singularities and polynomial-smoothing surfaces.
This major difference leads to a new smoothing behavior that
helps to alleviate the drawbacks of many existing filtering
methods. We will interpret the semi-sparsity model and show
the universal applicability of semi-sparsity prior knowledge
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for natural images. The main contributions of this paper are
summarized as follows:

o The semi-sparsity property is explored with a definition
under the context of signal/image filtering backgrounds,
and we also demonstrate its universal applicability on
natural signal/images with a statistic verification.

« A new semi-sparsity minimization is concisely designed
with an lg-norm regularization in higher-order gradient
domains, which gives rise to a new filtering method with
powerful simultaneous-fitting abilities in both sharpening
edges and polynomial-smoothing surfaces.

o An efficient iterative solver based on a half-quadratic
splitting algorithm is introduced to solve the proposed
semi-sparsity model in consideration of the non-convexity
of Ly-norm regularization minimization.

o A series of experimental results on natural images are
also presented to show the favorable properties of the
proposed model in comparison of many cutting-edge
“feature-aware” filtering methods.

We additionally remark that the simultaneous-fitting ability
of the semi-sparsity model makes it possible to remove the
local low-amplitude details and preserve the significant but
sparse singularities without introducing the notorious stair-case
artifacts, especially in polynomial smoothing surfaces. This
contributes to a new and effective filtering tool for a type of
signal/image processing tasks, in which traditional methods
can not be well-posed both theoretically and practically.

The rest paper is organized as follows. In Sec. |lI} the related
work is discussed in the context of a generalized optimization
framework. In Sec. we derive the proposed semi-sparsity
model in detail, where the Ly -norm regularization and its
limitations are recalled and semi-sparsity prior knowledge is
then discussed with the verification on natural images. The
semi-sparsity smoothing model and its accelerated solution
are presented in Sec. The experimental result are also
presented in Sec. [V] with a variety of applications in Sec.
We draw our conclusion and further work in Sec.

II. RELATED WORK

Within the fields of signal/image processing, a number of
filtering algorithms have been proposed to reduce noise or
perform a signal/image decomposition. Mathematically, many
of them can be, explicitly or implicitly, formulated into an
optimization-based framework with the form,

min [|u — Af[5 + AR (u), )
where, f and w are the observed and output signal the
weight A specifies a spatially-varying confidence map of
smoothness of f, R(u) is known as the regularization term;
and X\ > 0 specifies a trade-off between two terms. We review
the related work and show the internal relationships based on
Eq. [I] despite the varying forms and generalizations.

Firstly, we interpret a type of local filters with only A is
considered in Eq. |1, where R(u) is ignored, or set A = 0

'We, throughout, use the symbols f and u as functions or operators and
the bold ones f and w as their discrete counterparts.

equivalently. As interpreted in [[16]], a general construction of
A begins with specifying a kernel function K, for example, a
Gaussian filter kernel K with the i-th element,

Ki,j = exp(—(a:i — wj)TQiJ(ZL‘Z‘ — iBJ)), (2)

where, @ is a symmetric and positive definite (SPD) matrix
depending on the feature x, for example, * = wu, Qi,j = %I
(h is a control parameter related to the variance of noise). In
general, it holds A = A™'K with A is nontrivial diagonal
matrix with diagonal elements A;; = Zl K;;,and Ais a
(row-) stochastic matrix as its rows sum to one.

In the literature, a variety of local filters can be cast into the
above kernel-based context, for example, box filter and median
filter [[10]], in which each output is given by a mean or median
value of local neighbors. In bilateral filter [5]], a weighted sum
of local neighbors is treated as the smoothing output by taking
both spatial and data-wise distances into account. The guided
image filter [4] takes a similar local strategy based on a ridge
regression model to estimate the local filter output efficiently.
Non-local means (NLM) filter [17] is another case, while the
weight is derived from patch-wise data. The non-local idea
is also verified in block-matching and 3D filtering (BM3D)
[18] with high-quality performance. It is also easy to see
from Eq. [2] that the kernel K decays exponentially, therefore
the contribution of the samples far from the center can be
neglected in practice. This helps to reduce the computational
cost because only a few neighbors are sufficient to provide
high-quality approximate results. It is worth noticing that many
accelerations [19]-[22]] and extensions of these local filters
also benefit from this local property. The interested reader is
referred to the surveys [16], [23], [24]] for more details of
different kernel functions.

Secondly, we recall a type of global filter based on Eq.
Differing from local filters, these global filters are highly
dependent on the regularization term R(u) to penalize the
strength of smoothness, while the weight A is always reduced
into identity matrix (A = I for simplicity. This strategy has
been adapted by many existing filtering methods, for example,
total variation (TV) regularization [12] and many variants
[25]-[27], weighted least squares (WLS) methods [3], [13],
[28]], Lo gradient regularization [7]], [[14], [29], and so on.
The difference among them mainly lies in the characteristic
of prior knowledge for regularization. For the classical TV-
based method [12]], the regularization helps to remove the
random noise and streaking artifacts while preserving the
singularities (corners and edges). Nevertheless, these TV-based
methods tend to produce piece-wise constant results, thereby
leading to stair-case artifacts in polynomial-smoothing regions
[30]. In the case of WLS filter [3]], a weighted Lo gradient
constraint is exploited to reproduce visual-friendly smoothing
results, which is proved to be particularly suitable for image
smoothing in the case of halo-free image enhancement. When
R(u) comes to Lo gradient regularization [7], it is possible
to receive a high-quality piece-wise constant solution for
signal/image smoothing due to the excellent approximation
ability in the flattening regions. However, it still has the
limitation in processing a signal coexisting sparse features and
polynomial-smoothing surfaces.
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Recently, many approaches [31]-[33] have been proposed
to infer higher-order regularization to mitigate the stair-case
artifacts in polynomial-smoothing surfaces. It has shown in
total generalized variation (TGV) [31]], [32] that the problem
can be alleviated by higher-order regularity in homogeneous
regions while still allowing for discontinuities in the singu-
larities. The idea is subsequently extended to a directional
case [33]], allowing smooth signal/images in an anisotropic
fashion. Despite the high-quality performance, these higher-
order methods usually need to solve an optimization problem,
which is time-consuming in situations of large-scale data
samples in practice. Besides, many other filtering methods
can be understood under the interpretation of Eq. |1| explic-
itly or implicitly. The wavelet-based denoising methods [1]],
[34], for example, may take into account a sparsity-induced
regularization for wavelet coefficients because of the sparsity
prior knowledge of signal in wavelet transform domains. Many
regularization-based filtering methods can be also reformulated
into partial differential equations (PDEs) [2] to explore the
benefits of the edge-preserving property. Despite the different
forms and generalizations, they all strive to explore favorable
filtering results — smoothing data but allowing to preserve
the singularities and discontinuities, thereby making it easier
to extract or analyze useful information.

III. METHODOLOGY

We briefly review of the sparsity-induced regularization for
smoothing filters and then interpret the proposed semi-sparse
smoothing model with the verification on natural images.

A. Lg-norm Regularization for Sparsity

Mathematically, let v be a vector and v is a sparse signal if
the majority elements are zeros, denoted as ||v||,, where ||-||, is
known as Lg-norm, denoting the number of its non-zero entries
of a vector ﬂ Lo-norm provides a very simple but easily-
grasped notion of the sparsity of signal. In the literature, it has
shown that many signal/image processing tasks such as sparse
recovering [35]], [36], sparse representation and compressed
sensing [37]] can be viewed as finding a sparse solution to
under-determined (linear) systems. In man cases, the Ly norm
has been used as a favorable and powerful regularization
tool in the sparsity-induced models [35]-[37] to capture the
minority of key features (archetypes) of signals.

In the context of signal/image filtering technique, it has
also proved that Ly-norm regularization can be beneficial to
preserve the minority singularities and sharp discontinuous
features of signals. As suggested in [7], [29], it is possible
to use the Lg-norm to measure the non-zeros elements of the
gradient vector of an image, giving a regularization model,

min [|u — f5 + Al Vully, 3)

where V is a gradient operator and A weights the balance of
two terms. The term ||Vul|, counts the non-zero elements of
gradient signal, which means output u tends to be piece-wise

2It is not a true norm in a rigorous sense, but intuitively gives a useful
metric for the sparsity of vectors.
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Figure 1. An example of 1D signal smoothing, where signal u is composed of
the spikes (singularities), sharp edges, and slope line (or, polynomial surface).
It is clear that L gradient minimization [7]] preserves spikes and sharp edges
successfully but produces stair-case artifacts within the slope region (blue
line). In contrast, our semi-sparsity model attains better fitting (filtering)
results in polynomial surfaces with comparable results in both spikes and
sharp edges (red line).

constant. It turns out that such a regularization faithfully helps
to preserve singularities, corners, and sharp edges formed by
piece-wise constant regions. The regularization idea that the
gradients of signals are usually assumed to be sparse—only a
tiny part of the gradient magnitudes is relatively large and the
remainder is negligible for approximating to zero, underpins
different sparsity-induced filtering models [7]], [14], [29].

B. Semi-sparsity Priors

Despite the advantages of L, gradient minimization [7], it
may fail in the cases where sparse gradient prior knowledge
is not fully admitted, especially in the polynomial smoothing
surfaces. A simple example is presented in Fig. [I] for appetite,
where a 1D noisy signal u is composed of singularities, sharp
edges, and slope lines (or, polynomial surfaces). Clearly, the
gradient Vu is not fully sparse within the area of slope
region, because the gradient values are relatively larger than
zero. As a result, a staircase result (blue) would occur when
directly imposing sparse gradient regularization within dense
counterparts. This failure is largely due to the fact that sparsity
prior knowledge in the gradient domain is no longer fully
satisfied, which motivates us to resort to new regularizers for
better results — simultaneously fitting the polynomial surfaces
and sparse features (spikes and sharp edges).

Besides, it is clear in Fig. |1| that the non-zero elements of
gradient Vu are not fully sparse but densely distributed within
slanted regions. While it is easy to verify that the second-
order gradient Awu is sparse in the slanted regions. In this
situation, signal u has a semi-sparse property. Without loss of
the generality, we say w is a semi-sparse signal if its higher-
order gradients V"u and V"l satisfy,

V™ ully < M,
{an-luuo >N v
where V" is the n-th (partial) differential operator, and
M, N are appropriate natural numbers satisfying M < N.
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Intuitively, this conclusion can be directly extended into the
higher-order (n > 2) cases. The merit of Eq. {4 is easy to
understand, that is, the non-zeros entries of V™u is much
smaller than that of V" 'u, which occurs if and only if
V™ is much more sparse than V" 1u. Taking into account
a n—1 degree piece-wise polynomial function for example, it
is easy to verify that the n-th order gradient V™u is sparse,
while it not holds for the k-th (k < n) order gradient V*u.
This observation motivates us to regularize the higher-order
gradients for signal/image restorations.

C. Verification on Natural Images

In this section, we verify the semi-sparsity prior knowledge
of natural images. It is known that the gradient of natural
images has a heavy-tailed distribution and can be formulated
as a mixture of Gaussian or (hyper) Laplacian models [38].
We illustrate that the higher-order gradient distributions have
similar properties and are possible to be characterized under
semi-sparsity prior knowledge.

Specifically, we take Kodak dataset [39]] into account, which
contains 24 color images with abundant color, structures, and
textures information. The normalized distributions of different
higher-order gradients V*u (k=1,2,3,4,5) are presented in
Fig. 2. Under mild assumptionﬂ it is clear that the higher-
order gradient distributions satisfy the following claims:

o For natural images u, Vu admits sparsity criteria: there
exists a number M, satisfying ||Vu||, <M < N (N is the
number of pixels), because the majority entries (elements)
of Vu are zero or relatively close to zero.

o The higher-order gradient signals of natural images admit
semi-sparsity criteria: the higher-order gradients satisfy
HViuHO < M;, }VjuHo < M;, where i < j, the positive
numbers M; < M;, because V¥u tends to be more sparse
when the order k goes up.

o The sparseness of the higher-order gradients of natural
images is bounded. Let My = max M;, ‘V’“u”o < M,
admits for any order k, and My has a bound, because the
gap of sparsity between the gradients Vu* and Vu**! is
continuously decreased when the order k increases.

The claims can be intuitively verified from the normalized
distributions of the higher-order gradients. As shown in Fig.[2]
the first-order gradient of natural images has been well-studied
in many sparse-inducing methods [[7], [35], [36]]. Regarding the
higher-order cases, the sparsity of higher-order gradients Vu*
tends to be enhanced as the order k goes up. Moreover, Vu*
also tend to be bounded with the increasing order k£ in Fig.
[2l This indicates that it is possible to choose an appropriate
order depending on the requirements of precision in practical
applications. We will illustrate that the above claims could
be used for more faithful regularization for our semi-sparsity
minimization.

3With a slight abuse of notation, we use Lg-norm to measure the sparsity
of higher-order gradients for a fair approximation, because these gradients
with tiny magnitudes may be zeroed-out during the filtering process.
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Figure 2. The normalized distributions of the higher-order (n = 1~5)
gradients based on Kodak natural image dataset [39].

IV. SEMI-SPARSITY SMOOTHING MODEL
A. Proposed Model

On the basis of Eq. ] and verification of natural images,
it is naturally to pose a semi-sparse minimization scheme for
smoothing filters with the following generalized form,

n—1
p
minflu—Af[3+a 3 ||VFu-*Ap)| +AIVal, )
k=1

where « and \ are weights for balance. The first term in Eq. 5]
is data fidelity with A adapted from Eq. (1). The second term
measures the similarity of k-th (k <n) higher-order gradients.
The last term indicates that the highest-order gradient V"u
should be fully sparse under the semi-sparsity assumptions.

In practice, the choice of n is determined by the property
of signals. For natural images, the claims in [[I[-C| motivate us
to choose n = 2 as the highest order for regularization. We
chose p = 2 for most filtering cases in view of the non-sparsity
property of V*u and low computational cosﬂ As a result, we
have the reduced semi-sparsity model with the form,

min [Ju— £[|3+al|Vu—V fll;+X] Aull, ©)

Here, we follow the property of global filters, letting K be
Kronecker kernel for simplification. This choice is based on
two-fold benefits: (1) n = 2 is the simplest case of our semi-
sparsity model, and (2) a small n is enough for a wide range
of practical tasks with moderate computational cost.

Mathematically, Eq. [5 (or, [6) can be viewed as a general
extension of the sparsity-induced Lg-norm gradient regulariza-
tion [7]] in the higher-order gradient cases. Despite the minor
variants to Ly-norm gradient methods [[7]], [[14], it has startling
different properties compared with many existing filtering
methods. On the one hand, it has been shown in many existing
filtering methods such as bilateral filter [5], guided filter [4],
and TV-based filter [|12] that it is possible to guarantee high-
quality smoothing results in the polynomial-smoothing areas,
but it may inevitably lead to over-smoothing effects around
the sharpening edges. On the other hand, sparsity-induced
models [7], [14], [29] faithfully preserve the sharpening edges
without over-smoothing results, but they may produce stair-
case artifacts within the polynomial smoothing surfaces.

4t is possible to choose p for other choices, p = 1, for example, while the
numerical solution may be computationally expensive.
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a) Input b) BF [5] (e) L1-TV [40]  (f) Lo Gradient [7]

TV.

(k) Ours (n =2) (l) Ground Truth

g) BM3D [18] (h) WLS [3] ) RTV [27] j) TGV [32]

Figure 3. An visual comparison of filtering methods over polynomial-smoothing surfaces. (a) Input, (b) BF (w=25,4=8,0.25]) , (¢) GF (w=25,e=
0.012) [4), (@) TV (A =0.3) [12], (e)L1-TV [40], (f) Lo smoothing (A = 0.01, x = 1.05) (7], (g) BM3D |. (h) WLS (a=0.5, A =1.2) [3], (i) RTV
(A=0.05,0=2.0) - (G) TGV (A=0.008, ap =0.05, 1 =0.0025) [32] - (k) Ours (¢ =0.01, A=0.02), (1) Ground truth. PSNR: (a)~(k): 27.31, 39.10,

38.40, 39.72, 41.25, 40.50, 41.10, 41.49, 41.63, 42.52, 46.64. We compute PSNR by cropping out 12 boundary pixels for fairness comparison.

In a nutshell, it is difficult for both types of traditional
filtering methods to simultaneously fit a signal coexisting
the polynomial-smoothing surfaces and sparse singularities
features (spikes and edges), since they may either produce
over-smoothing results in singularities or introduce stair-case
artifacts in the polynomial smoothing surfaces. In contrast,
our semi-sparsity minimization model, as demonstrated in the
following experimental parts, avoids the dilemma and it is
possible to retain comparable edge-preserving properties in
strong edges and spikes and more appropriate results in the
polynomial-smoothing surfaces, giving arise to a so-called
simultaneous-fitting ability in both spikes and polynomial-
smoothing regions. This property provides a new paradigm to
deal with both cases in high-level fidelity, which contributes
its benefits and advantages to many traditional methods.

B. Half-quadratic Solver

Despite the simple form of Eq. [5] (or[6), a direct solution is
not always available due to the non-convexity and combination
property of Lg-norm. In the literature, such a minimization
problem is solved by greedy algorithms [41] to iteratively
select the sub-optimal solutions, or reduced with appropriate
relaxations [42]], [43]. Recently, different efficient algorithms
such as half-quadratic (HQ) splitting [43]], [44], iterative hard-
thresholding (IHT) [45]], [46]], and alternating direction method
of multipliers (ADMM) [14], have been proven to be
suitable for Ly-norm regularization.

We employ the HQ splitting technique for the semi-sparsity
minimization since it is easy to implement and has almost the
least computational complexity for large-scale problems. The
main idea of the HQ splitting algorithm is to introduce an aux-
iliary variable to split the original problem into sub-problems
that can be solved easily and efficiently. For completeness, we

briefly introduce the half-quadratic (HQ) splitting technique
with a general Lg-norm regularized form,

m&n}"(u)—F/\HHuHO @)

where F is a proper convex function, H is a (differential)
operator and the Lg-norm regularized term is a non-convex,
non-smoothing but a certain separable function. By introduc-
ing an auxiliary variable w, it is possible to rewrite the above
minimization problem Eq. [7] as,

min F(u) + Ae(w) + B Hu—wl|3 ®)

where c(w) = ||wl|, and HHu—ng is introduced to measure
the similarity of w and Hu. The solution of Eq. [§] globally
converges to that of Eq. [7] when the parameter 5 — ooc.

Clearly, the proposed semi-sparsity model is a special case
of Eq.Iﬂ where F(u)=|ju— f|24|V(u—f)||3 and H is the
Laplace operator V. The optimal solution is then attainable
by iteratively solving the following two sub-problems.

Sub-problem 1: By fixing the variable w, the objective
function of Eq. [f] reduces to a quadratic function with respect
to u, giving an equivalent minimization problem,

min [[u — flf; + ol Vu = VFI; + BllAu—w]. ()

Clearly, Eq. [0 has a closed-form solution due to the quadratic
form w.r.t. u. Let D and L be discrete gradient operator and
Laplace operator in matrix-form, the optimal solution u is then
given by the following linear system:

(I+aD"D +BL"L)yu= (I +aD"D)f + 8L w, (10)

where I is identity matrix. Since the left-hand side of Eq. [I0]
is symmetric and semi-positive, many solvers such as Gauss-
Seidel and preconditioned conjugate gradients (PCG) methods
are applicable for an efficient solution. It is also possible
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to use fast Fourier transforms (FFTs) for acceleration, which
can significantly reduce the computational cost, in particular
for a large-scale problem such as millions of variables in the
context of image processing.

Sub-problem 2: By analogy, w is solved with a fixed u
and the first two terms in Eq. [6] are constant with respect to
w, thus it is equivalent to solving the following problem,

min §]| Au — wlf3 + Alwll, an

where c¢(w) counts the number of non-zero elements in w.
As demonstrated in many existing methods [[7], [43], [45],
Eq. [IT] is separable and can be reduced to one-dimensional
minimization problem — that is, each variable w; is estimated
individually, giving by the formula,

Awsll?2 < 2
o {07 w3 < 3, 12
Auia

1Awill > 3.

It is also known that Eq. is a hard-threshold operator and
can be solved efficiently. The HQ splitting algorithm solves
two sub-problems iteratively, providing an iterative scheme for
the semi-sparsity minimization. Notice that both sub-problems
have closed-form solutions in low computational complexity,
which makes the Lg-norm regularized problem empirically
solvable even for a large-scale of variables. The numerical
results will demonstrate the effect and efficiency of the HQ
splitting scheme.

The above HQ splitting scheme gives rise to an iterative
hard-thresholding algorithm, the convergence of which has
been extensively analyzed under convex objective function
assumptions [43]], [44]. It has shown in [7] that such a scheme
can be directly extended to non-convex L, gradient regu-
larization for high-quality results. In [45]], a similar iterative
hard-threshold algorithm is proposed for compressed sensing,
where the convergence is built under the restricted isometric
property (RIP) and it is also not applicable to our case. It
turns out recently that such an iterative thresholding algorithm
can be extended to more general non-convex and non-smooth
cases, for example, our semi-sparsity minimization, under the
Kurdyka—-t.ojasiewicz property [49]. The concreted discussion
is out of the scope here and the interested reader is referred
to the literature [46], [49], [50]] for more details.

C. More Analysis

Parameter Settings: Notice that the solution of HQ split-
ting scheme gradually converges to that of Eq. [/| when 3 is
large enough. However, it is generally difficult to determine
the best value under a given accuracy. We take an adaptive
strategy as explained in [43]], [51]], where [ is increased by
k (k> 1) times in each iteration. A similar configuration is
also introduced for «, yet, decreasing by 7 (0 <7< 1) times
in each iteration. The configuration for « is based on the fact
that the second term in Eq. [5| plays a similar data-fidelity role
in during the smoothing process.

The parameters A\, a and S control the smoothness of
filtering results. We have A € [0.001,0.1], o € [0.01,10] in
most cases, and [ is increased gradually to remove local tiny
details until the large-scale or dense features are preserved with

Algorithm 1 Semi-Sparse Smoothing Filters

Input: signal f, weights A, «, 8, parameters 5o, Bmax
and rates x and T;
Initialization: v < f, 8 < (o, i + 0;
while 3 < (3,,4. do
With v, solve w; for Eq.
With w?, solve u;41 for Eq. with FFT acceleration;
o< Ta, B KB, i++;
end while
QOutput: Smoothing result wu.

little changing. We empirically set 5o = A and 3,4, = 1.0e5
without specification. Additionally, the factors « and 7 are
introduced to speed up the convergence of half-quadratic
splitting minimization algorithm [7]], [43], [51]. We set k=1.2
in most of our experiments without a specification and a
smaller x produces more near-ideal results. In contrast, we
also set 7=0.95 to ensure the smoothing results to be more
and more sparse in the highest-order gradient domains. The
above configuration maintains a good balance between filtering
performance and computational efficiency.

Computational Complexity: Due to the HQ-splitting
scheme, the semi-sparse model can be solved efficiently. As
shown in Algorithm (1} it has two main parts: linear system
solver and hard-threshold shrinking in each iteration. The
computation is dominated by the FFTs and inverse transforms
in the linear system solver at the computational cost of
O(Nlog(N)), where N is the total number of pixels in an
image. The hard-threshold shrinking operator can be computed
in place because of the separable characteristic of the sub-
problem. The number of iterations controls the total time of
the proposed semi-sparsity algorithm and it roughly needs 15
iterations to produce high-level visual results in most cases.
Our Matlab implementation runs on the PC with Intel Core2
Duo CPU 2.13G. It takes roughly 3 seconds to process a
600 x 400 resolution color image.

V. EXPERIMENTAL RESULTS

In this section, we show the simultaneous-fitting property
of the semi-sparse minimization of Eq. [f] and its advantages
in producing the “edge-preserving” smoothing results. We
emphasize the “edge-preserving” property as it is vital for
filtering tools to remove the small-scale details but preserve
the sharpening variations. The proposed approach is compared
with a variety of edge-aware filtering methods, including
bilateral filter (BF) [5]], total variation (TV) [12], L1-TV [40],
guided filter (GF) [4], BM3D denoising [18]], weighted least
square (WLS) filter 3], Lo gradient minimization [7]], relative
total variation (RTV) [27]], total generalization variation (TGV)
method [32], and so on. The experimental results are verified
on both synthetic and natural images. For the fairness of
comparison, the parameters in each filtering algorithm are
either configured with a greedy search strategy to give visual-
friendly results or fine-tuned to reach a similar level of
smoothness, qualified by the mean absolute average (MAE)
or peak-signal-noise-ratio (PSNR) metrics.
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—
() TGV [32]

(j) Ours

. : ‘v“
(f) WLS (9) BM3D (h) RTV

Figure 4. Visual comparison of smoothing results on a face image. (a) Input, (b) BF (w =25,6 =[8,0.25]) , (c) GF (w =25, ¢ =0.012) || (d) TV
(A=0.2) [12], (¢) Lo smoothing (A=0.01, x=1.2) 7], (f) WLS (@=0.5, A=1.2) 3], (2) BM3D & = 30 [I8], (h) RTV (A=0.02, 0 =2.0) [27], (i) TGV
(A=0.01, 20 =0.002, oy =0.002) [32]}, (j) Ours (a=0.1, A=0.02). As suggested in [10], the filters are processed in logarithmic intensity for better visual

results. MAE: (b)~(j): 0.0115, 0.0117, 0.0118, 0.0116, 0.0117, 0.0119, 0.0117, 0.0116, 0.0117.

Smoothing Filters: We first simulate a 1-D noisy signal
and show the performance for persevering step-wise edges
and polynomial smoothing region. As shown in Fig. [T} the
cutting-edge Ly gradient minimization [[7] attains high-quality
results in both spikes and step-wise edges, but produces strong
stair-case results in polynomial-smoothing regions. As afore-
mentioned, the failure is largely caused by the invalidation of
the sparse gradient regularization in the corresponding regions.
In contrast, our semi-sparse model gives more accurate fitting
results in the slope region with comparable performance in
both singularities and sharpening edges.

To further demonstrate the virtues of our semi-sparse
smoothing filter, we compare the results of a synthesized color
image that is composed of a piece of polynomial smoothing
surface (green region) and step-wise edges formed by different
constant regions. As shown in Fig. B| our method attains
similar performance as that in the 1D case. Among them,
TV method gives a high-quality fitting result within the
interval of slope line, but produces over-smoothing results
around the sharpening edge; Ly minimization preserves
the edges but leads to strong stair-case artifacts in the green
region and (WLS) filter [3]] also gives a high-quality result,
yet, with slight deviations in green region. The second-order
TGV method significantly reduces the stair-case artifacts
in the slant surface and also reveals high performance in
sharpening edges, while our semi-sparsity exhibits a similar
visual result and outperforms around 4 dB improvement under
the PSNR metric. Other methods, to some extent, either blur
the strong edges or produce piece-wise constant results in
the green region. In Fig. 4, we also show the results on
natural images. Specifically, we apply the filtering methods on

a face image consisting of multiple polynomial surfaces (face)
and strong edges (face contour and hair). In this situation, it
is usually difficult to produce a visual-pleasant result. The
dilemma mainly underpins the fact that both freckles and
hair reveal high-frequency characteristics, while the preferred
result may require to preserve the details in hair regions but
to remove freckles in smoothing face regions. As shown in
Fig. @] most existing “edge-aware” filtering methods reveal
limited performance in keep the smoothing balance between
the high-frequency hairs and smoothing face regions. For
example, bilateral filter (BF) and guided filter (GF)
produce acceptable smoothing results in face regions, while
they also blur the hair details slightly. BM3D method is
originally proposed for image denoising and usually reveals
high performance for noisy-free results, while it has limited
improvement in such cases because of the complexity and
diversity of potential details to be filtered out. Notice also
that Ly minimization produces stripe-like results in face
regions. In contrast, our semi-sparsity method removes the
details in face regions but also retains high-quality edges in
the hair region, giving rise to a more promising result.

For complementary, we briefly explain the roles of «, 3 in
controlling the smoothness of the semi-sparse minimization
model. A visual comparison with varying parameters o and
B is presented in Fig. B} In each row, « is fixed and X is
gradually increased to give more smoothing results; while, in
each column, A is fixed and « is increased to remove more
strong local details. As we can see, A plays a crucial role in
controlling the smoothness of results and a larger A\ penalizes
to remove more local details and lead to more smoothing
results. Over-weighting the second-order term will penalize



JOURNAL OF KTEX CLASS FILES, VOL. XX, NO. XX, XXXX 2023

(e) Close-ups

(f) a = 0.1, A = 0.002

(d) o =10,\ = 0.1

(@) @ =0.1,A = 0.01 (h) a=0.1,A = 0.1

Figure 5. Our semi-sparsity smoothing results of an 2D image with varying parameters « and (3. Note that the filtering algorithm is processed in the

logarithmic intensity for better visual effects.

smoothing regions as well as fine features and therefore over-
smooth the details. A similar trend is observed for o but with
a decreasing value and the results are not so sensitive to the
varying of «. Notice that « is reduced by s time in each
iteration, because the penalty for the first-order gradient in
Eq. B] and [f] play a similar role as the data-fidelity term, thus
it has a relatively small impact on the global smoothing results
but mainly adjusts the local details.

Higher-order Regularization: The choice of order n in
Eq. [f] for sparse regularization is generally determined by
the property of signals. For natural images, we interpret that
n = 2 is usually enough to give favorable results in most
cases, although further improvements can be attained with the

(b) 1%t-order

(@) Input

regularization over higher-order gradient domains. As shown
in Fig. [6] we illustrate this observation by comparing the
smoothing results in which the sparsity constraints are imposed
from the 1% to 3"¢ orders regularizations. As shown in L-
gradient regularization , the 1% order case may introduce
strong staircase effects in the flower region and background.
Under a similar level of smoothness, the proposed method alle-
viates the staircase artifacts, and no obvious difference appears
except in some tiny regions for the 2"¢ and 3" cases. This
result, to some extent, provides validation of the conclusion
that the regions having the degree (n > 3) polynomial surfaces
in natural images occupy very tiny regions in natural images,
which can be treated as spikes approximately.

(c) 24-order

(d) 37¢-order

Figure 6. Comparison of the smoothing results on a natural image with the sparse regularization from the 15%-order to 3"%-order gradient domains, respectively.

PSNR: (b)~(d): 33.54, 33.96, 33.16 (Zoom in for better view).
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This result can be also explained from the higher-order
gradient distributions of natural images in Fig. 2, where the
sparseness of the higher-order gradient signal is gradually
enhanced when the order n increases. Moreover, there exists
a bound of the spareness when the order n keeps increasing,
as the distributions tend to be more and more similar. On the
other hand, it is also clear that the gap of sparseness of the 15
and 2" order gradients is much bigger than that of the 2"¢
and 3"¢ order gradients. A similar trend is also observed in the
higher-order cases. Accordingly, we claim that the polynomial-
smoothing surfaces with degree (n > 3) do not frequently
occur in natural images, the area of which is relatively smaller
than that of the n = 2 case. Therefore, it is usually enough
to impose sparse regularization on second-order gradients for
natural images. Another consideration of choosing the 2"¢
order gradient for regularization is to reduce the computation
cost in many practical applications.

VI. APPLICATIONS

Similar to many existing filtering methods, it is possible to
use our semi-sparsity model in various signal processing fields.
We describe several representative ones involving 2D images,
including image detail manipulation, high dynamic range
(HDR) image compression, image stylization and abstraction.

A. Details Manipulation:

In many imaging systems, the captured images may suffer
from degradation in details for the inappropriate focus or

(a) Inpu ) GF ) WLS

parameter-settings in image tone mapping, denoising, and so
on. In these situations, “edge-aware” filtering methods can be
used to help recover or exaggerate the degraded details. In
general, it is popular to use the smoothing filters to decompose
an image into two components: a piece-wise smoothing base
layer and a detail layer; then either of them can be remapped
and combined for reconstructing better visual results. We
compare the results with the cutting-edge methods [3]—[5],
(7], [32]). For fairness, all filtering methods produce a similar
level of smoothing results. The detail layer is then obtained by
subtracting the smoothing base-layer from the original image.
The enhanced image is reconstructed by combing the re-scaled
(x3.5) detail layer with the base-layer. As we can see in
Fig. 7, the guided filter [4]], WLS filter [3]], BM3D denoising
and total generalization variation (TGV) methods
may cause halo artifacts around strong structures; while Ly
smoothing helps to reduce the halos but leads to crash
boundaries due to the inappropriate stair-case filtering results
in the polynomial-smoothing regions. In contrast, our semi-
sparsity model receives the best result with rich local details
but tiny halo artifacts. A multi-scale strategy is also introduced
for detail enhancement. As suggested in WLS filter [3], the
multiple base layers are generated under different smoothing
levels, and the detail layers are then obtained by subtracting
one from the former smoothing result. As shown in Fig. [§]
the small, median and coarse levels are applied for producing
smoothing base layers and the final merged result.

(g, AR . R :
(d) BM3D [18]  (e) TGV [32] (f) Lo [7] (g) Ours

Figure 7. Image enhancement with (x3.5) boosted detail layers. (a) Input image, (b) Guided filter (w = 15,€ = 0.252) , (c) WLS filter (&« = 0.5, A = 1.2)
[3l, (@BM3D [18], (e) TGV (A=0.02, g =0.05, a1 =2e—3) [32], (f) Lo Smoothing (A = 8e—3) [T, (2) Our result (a = 1.0, A = 0.01). All filters
are configured to produce a similar level smoothing results. MAE: (b)~(g): 0.0319, 0.0321, 0.0321, 0.0319, 0.0320, 0.0321. (Zoom in for better visual
comparison).
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(a) Input

(b) Small

(c) Median

10

(d) Coarse

(e) Merged Result

Figure 8. Multi-scale details manipulation. Three scales: (b) small (o« = 0.01, A = 0.001) and (c) median (o« = 0.1, A = 0.005), (d) coarse (« = 1.0, A =

0.02), and (e) is obtained by scaling (x2) detail-layers.

B. HDR Image Compression:

This technique arises from the visual-friendly display of
high-quality HDR images. It is similar to image details
manipulation and an HDR image is usually assumed to be
decomposed into a base layer and a detail layer. The base layer
is piece-wise smoothing with high dynamic range contrast,
which needs to be compressed for display or visual purposes.
The compressed smoothing output is then re-combined with
the detail layer to reconstruct a new image. The challenge here
is to decouple the base layer and maintain reasonable image
contrast during dynamic range compression while keeping a
balance of the smoothness between the piece-wise areas and
sharp discontinuities to avoid halos around strong edges and
over-enhancement of spatial local details.

As shown in Fig. 0] bilateral filter produces an LDR
image with the fine-balance global illumination but the details
in local, which is partially recovered by the gradient domain
(GD) compression and WLS filter [3] but they still
have limitations in bringing out local tiny details; while L0
smoothing tends to produce exaggerated local details,
which is mainly caused by the stair-case fitting results in
polynomial smoothing surfaces. In contrast, our semi-sparse
filtering method provides a result with appropriate contrast in
local and fine-balanced global image illumination. A similar
result is also found in Fig. [I0] where we only replace the
filter method and the color and saturation share the same
configuration as in paper for a fair comparison. Visually,
the WLS filter [3]], guided filter [4], and total generalization

(a) Bilaral Filter [52]

variation (TGV) are possible to produce high-quality LDR
results, but they may have limitations in compressing the
dynamic range around strong edges; while our method receives
a comparable result as the well-known gradient domain
method. Notice that LO smoothing method may also lead
to artifacts due to the inappropriate smoothing results in the
polynomial-smoothing surfaces.

To verify the performance of these existing smoothing filters
for HDR image compression, we further take a quantitative
evaluation based on the Anyhere dataset [53]. The dataset
has 33 widely-used HDR images with different illumination
distribution. In general, it is difficut for HDR compression
tasks for an objective image quality assessment, because the
corresponding ground-truth images are always not available.
Recently, no-reference approaches based on statistical models
have also shown promising success in predicting the quality
of images. As suggested in [54], we use Tone Mapped
Image Quality Index (TMQI) [55], Integrated Local Natural
Image Quality Evaluator (IL-NIQE) [56] and Neural Image
Assessment (NIMA) for evaluation. The TMQI index
is a full-reference assessment method between HDR image
and the output LDR image, in which Structural Fidelity (SF)
and Statistical Naturalness (SN) are considered to provide
an objective quality assessment. The SF index is based on
the multi-scale structural similarity (SSIM) approach to
provide a perceptual predictor of structural fidelity. The SN
index is based on a statistic method to takes the natural
image statistics of brightness, contrast, visibility and details

(b) GD (c) WLS Filter [3] (d) L, Smoothing (e) Our Result (n = 2)

Figure 9. HDR image compression. From left to right: (a) Bilateral filte (BF) (b) Gradient domain (GD) compression [T1]], (c) WLS filter, (d) Lo
smoothing and (e) Our result (o« = 0.5, A = 0.01). The results of (a)~(d) are adapted from the authors’ projects. TMQI (Q): 0.8895, 0.9305, 0.8965, 0.9562.
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() WLS [3

11

Figure 10. HDR image compression. (a) WLS filter (a«=1.2, A=5.0) [3], (b) Guided filter (r=15, =8, 2]) , (c) LO smoothing(A=0.5,k=1.2) ,
(d) Total generalization variation (TGV) (A=0.02, a9 =0.1, v =0.05) [32], and (e) Ours (a«=1.0, A = 0.4). For fairness, all the filters produce a similar
level smoothing results under the same color and saturation configurations. TMQI (Q): 0.9681 0.9624 0.9568 0.9679, 0.9712

Table T
QUANTITATIVE EVALUATION FOR HDR IMAGE COMPRESSION ON THE ANYHERE DATASET [53]].

Metrics ®) BF ] [ GF ] [ TV [12] | WLS 3] | L:i-TV [40] | Lo smoothing [7] | RTV [27] | TGV [32] | Ours

(SF) | 09046 | 09059 | 09043 | 0.9058 0.9003 0.8933 0.8878 09056 | 0.9130

TMQI (SN) | 08779 | 08871 | 08283 | 0.8943 0.8967 0.8567 0.8532 08927 | 0.9254
Q 09584 | 09601 | 09510 | 09611 0.9600 09523 0.9503 09608 | 0.9675

TL-NIQE [56 24.26 2479 | 2338 23.40 2328 24.58 23.90 2337 23.02
NAMA H 5.43 5.48 5.27 5.52 533 521 530 542 5.63

into account. IL-NIQE and NIMA are two no-
reference image assessments. The former is a learning method
based on natural image statistics features derived from color,
luminance, gradient and structure information; and the latter
attempts to predict consistent aesthetic scores with human
opinions using convolutional neural networks. The NIMA
method is trained on a large-scale natural image dataset
for perceptually-aware no-reference quality assessment. For a
fairness comparison, all the filters are configured to produce
a similar level smoothing results under the same color and
saturation as suggested in [3]]. The statistical results are shown
in Table[] where the best two results are highlighted with bold
and underline, respectively. The advantages of the proposed
method are also verified with consistent visual-results in Fig.
and

C. Image Stylization & Abstraction:

This interesting task aims to produce different stylized
results or non-photorealistic rendering (NPR) of an image.
In this case, the proposed semi-sparse filtering method is
firstly applied for an image to remove the local textures and
details; the main structure of the smoothed image is then,
as interpreted in [§]], extracted by using the Difference-of-
Gaussian (DoG) operator; and the stylized result is finally
attained by merging the filter result and main structures. Due
to the simultaneously-smoothing property of the semi-sparse
model, it avoids introducing extra edge lines in polynomial
surfaces. Despite the isotropic property of the DoG operator, it

is usually enough to produce visual-friendly results. As shown
in [8], it is also possible to produce different artistic effects
such as hatching, woodcut, watercolor, and so on. We show
two simple examples: pen and color-pencil drawing effects
in Fig. [TT} One can also combine our semi-sparse smoothing
filter model with more complex configurations as illustrated in
[9] to produce more reasonable and aesthetic stylized results.

VII. CONCLUSION

This paper has described a simple semi-sparse minimization
scheme for smoothing filters, which is formulated as a general
extension of Lg-norm minimization in higher-order gradient
domains. We demonstrate the virtue of the proposed method

(b) Pen Drawing

(a) Input (c) Color-pencil

Figure 11. Image stylization. From left to right: (a) Input image, (b) Pen
drawing, and (c) Color pencil effect.
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in preserving the singularities and fitting the polynomial-
smoothing surfaces. We also show its benefits and advan-
tages with a series of experimental results in both image
processing and computer vision. One of the drawbacks is the
high computational cost of solving the iterative minimization
problem, which could be partially alleviated by resorting to
more efficient solutions with a faster convergence rate. We
leave the work for future studies.
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