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Abstract—In this paper, we derive a novel optimal image transport algorithm over sparse dictionaries by taking advantage of Sparse
Representation (SR) and Optimal Transport (OT). Concisely, we design a unified optimization framework in which the individual image
features (color, textures, styles, etc.) are encoded using sparse representation compactly, and an optimal transport plan is then inferred
between two learned dictionaries in accordance with the encoding process. This paradigm gives rise to a simple but effective way for
simultaneous image representation and transformation, which is also empirically solvable because of the moderate size of sparse
coding and optimal transport sub-problems. We demonstrate its versatility and many benefits to different image-to-image translation
tasks, in particular image color transform and artistic style transfer, and show the plausible results for photo-realistic transferred effects.

Index Terms—Image-to-image translation, color transform, image style transfer, optimal transport, sparse representation.

✦

1 INTRODUCTION

IMAGE-to-image translation is an interesting but rather
challenging image synthesis problem in image processing

and computer vision fields. Recent studies have shown that
many image-to-image translation tasks can be identically
posed as a special image transportation problem within the
context of optimal transport framework. For example, image
color matching [47], [54] and transfer [16], [17], [27], [52],
[53] are easily formulated into an optimal transport problem
by inferring a mapping between image color distributions.
Image super-resolution [61], [65] can be viewed as to find
an optimal mapping between images with different scales
or resolutions. Similarly, the more complex image texture
synthesis [12], [18], non-photorealistic rendering [21], [34]
and artistic stylization [13], [18], [19], [39], [40], [62] are
essentially aim to infer transportation maps between the
abstract semantic features (saturation, textures, styles, etc.)
when considered them in optimal transport context. Despite
the varying backgrounds, forms and generalizations, they in
nature share a very similar goal — that is, automatically
converting an image from one domain to another while
preserving the semantic styles or contents for either better
interpretation or visual-pleasant purposes.

In a general sense, image translation problem can be
formed as an admissible map in latent feature spaces while
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preserving the interest of contents or information (color,
texture or styles, etc.). In nature, it is necessary to solve
two fundamental sub-problems, that is, image encoding and
feature transformation. The former is to seek a useful image
representation tool to extract the discriminative or individ-
ual image styles, while the latter aims to infer an appropriate
mapping for the encoded image styles while maintaining
abstract information such as image structures, textures and
high-level semantic characteristics. As illustrated hereafter,
many vision-based tasks can be understood from the two
sub-problems. The difference mainly underpins the process
of image encoding and feature transformation. Image color
matching [16], [53], [54], for example, tends to take image
intensities (or, hue and saturation) as a meta-representation
and solves a mapping problem between color palettes to
determine the transferred results. In contrast, it is crucial to
have both concisely-designed image encoding and feature
transformation for artistic image stylization in view of the
complexity of abstract styles. In many scenarios, it is also
important for the encoding process to have a compact form
for the sake of reducing computational cost, while the trans-
lation problem involves a special transport map between
two distributions of individual image features. It has also
witnessed recent efforts to address the two sub-problems
for different image style transfer applications, including
the ever-increasing deep learning-based methods [10], [18],
[19], [30]. Despite the great success, there is still considerable
interest to exploit more easy-configured and powerful tools
to achieve more visual-appealing results.

In this paper, we propose a novel approach for image-
to-image translation, in which an optimal transport map is
directly posed on sparse dictionaries learned from sparse
image coding. Specifically, sparse representation is applied
as a feature extractor to encode the latent features of images.
Optimal transport is subsequently inferred over the learned
dictionaries to provide an optimal styles-swapping plan
in accordance with the style encoding process. This new
model, as shown in 1, inherits two-fold benefits of sparse
representation and optimal transport. On the one hand,
sparse representation provides us a maneuverable and easy-
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Figure 1: An illustration of optimal image transfer on sparse dictionaries. Given a content image Fig. 1a and reference
image Fig. 1e, the proposed method learns the individual dictionaries Fig. 1c and then derives an optimal transport plan
over the learned dictionaries, giving the transferred results Fig. 1b and Fig. 1d, respectively.

understood image editing tool to encode the semantic fea-
tures of images, as it has been demonstrated in a variety
of successful applications such as image denoising [1] and
super-resolution [65]. On the other hand, optimal transport
allows us to swap the encoded features or styles based on a
linear mapping. Moreover, the size of learned dictionaries is
moderate in practice, which also helps to alleviate the high
computational cost of the native optimal transport. We will
illustrate that this new paradigm, with a slight relaxation, is
empirically solvable and gives rise to a closed-form solution
to many image translation problems. We also demonstrate
its versatility and many benefits to image-to-image transla-
tion with two typical tasks: color transform and artistic style
transfer, and show their high-quality transferred results.

Our main contributions are summarized as follows:

• We recall a typical of image-to-image translation
tasks and interpret them that can be cast into an opti-
mal transport context by infer an transportation map
between some abstract semantic features (saturation,
color, textures, styles, etc.)

• A generalized optimization framework is concisely
designed for image-to-image translation by taking
advantage of both sparse representation and optimal
transport, which provides a simultaneous image rep-
resentation and transformation tool for a wide range
of vision-based tasks.

• We present an alternative solution by decomposing
the proposed optimization problem into three sub-
problems: sparse coding, learning style dictionaries
and optimal transport with a series of relaxation.
Since each sub-problem can be efficiently solved
with standard algorithms, which provides a practical
solution for the proposed optimization problem.

• We demonstrate the versatility and many benefits
of the proposed method to image-to-image trans-
lation with two typical tasks: color transform and
artistic style transfer, and show their high-quality
transferred results.

We further conclude the merit of simultaneous image
representation and transformation beneficial from sparse
representation and optimal transport. On the one hand,
sparse representation provides a relative simple but effective

encoding tool to represent image low-level or semantic im-
age features such as image color, saturation, textures, styles,
etc. On the other hand, the transportation mapping over
sparse dictionaries significantly reduces the computational
cost due to the small size of learned dictionaries. Due to
the two-folds of benefits, the proposed method give arise
to a practical tool for a wide range of image-to-image tasks,
such as image color matching and transfer, super-resolution,
texture synthesis, artistic stylization, and so on.

2 RELATED WORK

Image-to-image translation, as aforementioned, covers a
wide range of vision-based tasks despite their different
backgrounds and generalizations. We briefly review some
existing color transform and artistic style transfer methods,
in particular the ones for photo-realistic results because of
the close connections to the proposed optimal style transfer
on sparse dictionaries.

Color matching or transfer is a typical image-to-image
translation application keen on photo-realistic results. The
purpose is straightforward, that is, to alter color appearance
of an image based on a reference image [27], [54], [64].
In the early stage, color transfer is usually posed as a
one-dimensional histogram matching problem between two
color distributions — for example, histogram equalization
or specification. As suggested in the pioneering work [54],
color transfer is implemented by matching their global sta-
tistical mean and covariance of two images. Such a strategy
is then extended to other color space [47], [64] or combined
with the lightness and brightness information [27]. They,
however, may produce non-harmonic results because of the
non-consistent color distributions of natural images. Other
methods [15], [27], [57] also resort to some color segmen-
tation techniques for local color matching, while such a
strategy is highly dependent on the semantic constraints for
color segmentation in practice.

To reduce the notorious non-harmonic artifacts, recent
advances based on optimal transport [16], [52] have gained
great attention in color transfer applications. The work can
be dated back to the study of histogram-matching problems
and the relation to optimal transport for gray images [8],
[47]. Such a strategy is then extended to color images and
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videos. The assigned color could more or less avoid the un-
desired visual artifacts. It is worth noting that the transport
map is mostly deduced from the discrete samplings, the
solution may be not reachable for a very large-scale prob-
lem, for example, in the cases of using optimal transport,
where a naive optimal transport has a O(n3) complexity for
n pair samples. More recently, the relaxed and regularized
OT methods are also explored for color transfer to tackle the
high computational cost. However, as pointed out in [16],
[53], an exact transform of color distributions is not enough
in practical applications because color densities may have
very different shapes and outliers. As a consequence, the
transfer performance may be limited by the sampling and
interpolation processes.

Simultaneously, image style transfer — which is mostly
dedicated to non-photorealistic image rendering for artistic
effects, has been extensively studied for the long-standing
dream of generating attractive artworks automatically. Most
traditional methods are either based on line-drawing and
stroke-based rendering techniques to produce the pre-
scribed effects, including image stippling [36], pencil sketch-
ing [34], [62], watercolor [4], oil painting [20], [23], and so on.
As shown in difference-of-Gaussians (DoG) operator [62]
and flow-based filtering [34], they boost the salient line
features or main structures of images, and help to yield
aesthetically pleasing lines when synthesizing line drawings
and cartoon-like art effects. The stroke-based rendering tech-
nique is another prevalent strategy for artistic image styl-
ization [34], [62], in which the brush strokes are iteratively
aligned according to the variants of local color, size, and
orientation information. With careful design, it is possible to
generate high-quality results for some prescribed styles but
may be limited in style diversity. The reader is referred to
the surveys [20], [39], [62] for more details.

More recently, it has also witnessed the great success of
neural style transfer with the renaissance of deep learning
methods. In the pioneering work [19], for example, a novel
iterative optimization scheme over a conventional neural
network is proposed to match the learned features within a
pre-trained classification network. The idea is subsequently
developed by many deep learning methods for more effi-
cient stylization [30], [63], stroke-based paintings [43], [58],
[69] and universal style transfer [9], [22], [26], [29], [31], [33],
[38], [40], [42]. In the last few years, it has also witnessed
many efforts for photo-realistic style transfer [2], [25], [35],
[41], [44], [45]. Despite the impressive artistic effects, they
may suffer from some unpredictable effects with spatial dis-
tortions and artifacts which are not consistent with semantic
interpretations or should not happen in real photographs,
since it is still not comprehensively understood the mech-
anism of the deep encoding process. Recent studies have
shown that the matching of features can be formulated as an
optimal transport problem between the learned features for
more favorable results [37], [48]. The achievement of deep
learning methods is largely due to the two-fold benefits of
many deep learning architectures — that is, the encoding
ability of neural networks offers a powerful and ubiquitous
tool for high-level visual features, and the transformation
map between deep features is also learnable during the
training process. Moreover, many deep learning methods
are usually limited by the availability of very large-scale

Figure 2: Sparse representation of an image with the distri-
bution of dictionary

training datasets. The reader is also referred to the work [31],
[32], [68] for more details of deep learning-based techniques.

3 PRELIMINARY

In this section, we briefly introduce sparse representation
and optimal transport, as they form the key ingredients of
the proposed model for image style (feature) encoding and
transformation.

3.1 Sparse Representation
Sparse and redundant representation [1], [55] has been used
as a simple and important method for signal/image analysis
and processing, in which the signal/image is assumed to
be compactly approximated by a linear combination of
a few fundamental elements — known as a basis set or
a dictionary. One of the overwhelming benefits of sparse
representation is to reduce the size of large-scale problems
in signal/image processing fields since the majority of
information is encoded by a small set of basis functions
weighted by sparse coefficients. In image processing and
computer vision fields, sparse representation provides an
effective image editing tool to encode the latent middle-level
vision features of images. The basis or dictionary of sparse
representation can be either selected from a group of pre-
defined functions such as discrete cosine transform (DCT)
and wavelet or learned from training data. We here consider
the learning-based dictionaries for better performance.

Mathematically, let X = {xi}Ni=1,xi ∈ Rd be a set of
data samplings, for example, the vectorized image patches,
sparse representation then aims to discover a group of
dictionary vectors {dj}nj=1,di ∈ Rd, n ≪ N (or, denoted
as D = [d1, · · · ,dn]) associated with the efficient matrix
A ∈ Rn×N , which can be written as,

X = DA s.t. ∥αi∥0 ≤ K, (1)

where αi ∈ Rn denotes the represented coefficients of
sampling xi, corresponding to the i-th column vector of
the coefficient matrix A, ∥·∥0 is known as pseudo L0-norm
counting the non-zero elements of a vector. The constraint
∥αi∥0 ≤ K suggests that the number of non-zero entries in
αi is no more than K . In other words, the coefficient A has
sparse characteristics, the assumption of which forms the
nature of sparse representation.

Despite the simple form, it is generally a challenging
problem to give a direct solution for sparse representation
because both dictionary D and sparse coefficient matrix A
in Eq. 1 are unknown in advance. Moreover, the solution is
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always not unique when solving one by fixing another. The
problem is also known as an NP-hard in view of the non-
convex L0-norm constraint. In practice, it always resorts
to some approximate algorithms such as the method of
optimal directions (MOD) [14], generalized PCA [59] or K-
SVD algorithm [1] to give a solution. Other methods for ap-
proximate solutions may be based on relaxation techniques,
for example, replacing the non-convex L0 constraint with its
convex L1 approximation.

The choice of an appropriate dictionary is also crucial
to sparse representation for many practical applications.
We here consider an example in Fig. 2 for interpretation.
The process starts with the cropped image patches that
are randomly sampled from an image or a dataset. The
data matrix X is formed by concatenating these vectorized
patches, and the dictionary D and coefficient A can be
achieved by solving Eq. 1 accordingly. Before diving deeper,
we point here out that the row sum of the coefficient matrix
is important to the proposed method, as it measures the
frequency of each dictionary atom occurring in an image.
Mathematically, it provides a probability distribution of
image dictionary atoms. We will illustrate how to learn a
pair of coupled dictionaries to represent the abstract styles
of images in accordance with the optimal transport between
learned dictionaries.

3.2 Optimal Transport
Optimal transport is also a well-developed mathematical
theory [60], which can be traced back to Monge’s problem
and then discovered under different backgrounds [51], [60].
We here review the Monge problem and its Kantorovitch
relaxation for the sake of complementary.

The Monge’s Problem: Let µ, ν be two probability
measures on two metric spaces X ∈ Rn,Y ∈ Rm, and
given a cost function c(x, y) : X × Y → [0,∞], which
represents the effort of transporting the mass from x ∈ X
to y ∈ Y , the Monge’s formulation aims to find a transport
map T : X → Y , realizing the infimum of the function:

inf
T♯µ=ν

∫
X
c(µ, T (µ))dν(x), (2)

where T♯µ
def
= ν is known as the push-forward operator that

pushes forward the mass of µ to ν [49], [51]. The transport
map T attains when reaching the infimum, the existence of
which in practice, however, is not always guaranteed, for
example, when only one of µ and ν is a Dirac function.

The Kantorovitch Relaxation: Alternatively, a simple
relaxation of Monge’s problem initiated by Kantorovich is
guaranteed to have a solution. The key idea is that the mass
at any point of x can be potentially dispatched across several
locations of y. The equivalent Kantorovitch formulation
of the optimal transport seeks for a probabilistic coupling
π ∈ P (X × Y) between X and Y [51]:

inf
π∈Π

∫
X×Y

c(x, y)dπ(x, y), (3)

where Π
def
=

{
π ∈ (R+)X×Y | πX = µ, πY = ν

}
is the set of

transportation plans with the joint distribution of marginals
µ and ν. In this formulation, π can be understood as a
joint probability measure with marginals µ and ν. The cost

function c(x, y) can be chosen, for instance, as Euclidean
distance between two locations x and y, while other types
of metrics could be considered, such as Riemann distances
over a manifold.

Discrete Case: In practice, the distributions µ and ν are
always accessible through discrete samples, which leads to
a discrete optimal transport problem [46], [51]. Considering
two discrete probability measures µ :=

∑m
i=1 aiδxi

and
ν :=

∑n
j=1 bjδyj

sampled from the source and target sam-
ples {xi}mi=1,

{
yj

}n
j=1

with xi,yj ∈ Rd, it is straightforward
to rewrite the discrete Kantorovitch optimal transport as,

min
T∈Π(a,b)

⟨C,T⟩ def
= min

T∈Π(a,b)

∑
i,j

Ci,jTi,j (4)

where T is a coupling matrix with entries Ti,j describing
the amount of mass flowing from ai to bj and Π(a, b)

def
=

{T ∈ Rm×n
+ |T1n = a,T⊤1m = b}. The cost matrix

C ∈ Rm×n has the entries Ci,j = c(xi,yj) specifying the
transport effort between the location pair (xi,yj).

It is well-known that Eq. 4 can be rewritten into a special
linear program problem and solved using linear solvers
such as network flow solver or transportation simplex [7].
Despite the simple form, the linear solvers are also com-
putationally expensive, especially for a large-scale case —
for example, having O(n3) complexity for n pair samples
with network flow solvers. In many practical tasks [50],
[51], the Sinkhorn’s algorithm [11] is always chosen as a
faster alternative method to solve such a discrete optimal
transport approximately.

4 OPTIMAL IMAGE TRANSFER

We suggest that image-to-image translation problems can
be implemented by means of sparse representation and
optimal transport. Image transfer, as pointed out, aims to
solve the feature encoding and transformation problems.
We illustrate that sparse representation provides an effective
tool to encode the individual and discriminate features of
different images since it has been used as a feature extractor
in many image processing tasks. Sparse coefficients can
be viewed as a counting process of dictionary elements,
as shown in Fig. 2, which gives a probability measure to
weigh the importance of each style element. Consequently,
a transport plan between the encoded features is attainable
and efficiently computed based on optimal transport under
the small size of learned dictionaries (See Fig. 3).

4.1 Problem Formulation

For simplicity, we take into account an image transfer
problem between two images x and y with the features
or styles sx, sy , respectively. Without loss of generality, let
X = {xi}Mi=1,Y = {yj}Nj=1,xi,yj ∈ Rd be the vectorized
patches sampled from image x and y, the latent styles sx
and sy can be expressed by sparse dictionaries given by,{

X = DxA, s.t. ||αi||0 ≤ K1,

Y = DyB, s.t. ||βj ||0 ≤ K2,
(5)

where Dx = [dx
1 , · · · ,d

x
m] and Dy = [dy

1, · · · ,d
y
n] are the

style dictionaries. We assume the entries dx
i ,d

y
j ∈ Rd are
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(a) Content image (b) Content dictionary (c) Transport map (d) Style dictionary (e) Reference image

Figure 3: An illustration of optimal transport over two dictionaries. Given the content and reference images, the proposed
method firstly learns the individual dictionaries and then derives an optimal transport map between the learned
dictionaries.

in the same space. A ∈ Rd×M ,B ∈ Rd×N contain the
coefficient vectors αi and βj of the i-th and j-th samplings
xi and yj . The constraints suggest the weights αi and βj

tend to be sparse — that is, the number of non-zero entries
is less than the positive K1 (or, K2).

The dictionaries Dx and Dy , in general cases, may
not exactly encode the styles sx and sy , while, as demon-
strated hereafter, it is also enough to provide favorable
transferring results for image transfer tasks. The use of
sparse/redundant representation, on the one hand, is to
find a compact and effective image editing tool for the
latent styles. Notice that the size of dictionaries is always
much less than samplings in practice, thus optimal trans-
port between two dictionaries Dx and Dy is affordable
even using linear program solver [7], which is significantly
reduced the computational cost compared with the naive
case over the samplings X and Y. On the other hand, it is
reasonable to assume that the weights of each element in
learned dictionaries indicate the contribution of the latent
style to an image. Notice also that the row sum of each
row of coefficient matrices counts the total contribution of
each style element. Let a, b be the row sum of coefficient
matrices, we have a = A1M , b = B1N , where 1M (N)
is the vector with all M(N) entries being value 1; and
two discrete probability distributions µ :=

∑n
i=1 aiδdx

i
and

ν :=
∑m

j=1 bjδdy
j

of the learned dictionaries, where ak

and bk are the k-th element of a and b, and δ(·) is the
Dirac function. Recalling the Kantorovich relaxation of the
transport problem in Sec. 3.2, we have an optimal transport
on the learned dictionaries,

min
T∈Π(a,b)

⟨C,T⟩ def
=

∑
i,j

Ci,jTi,j , (6)

where Ci,j
def
= c(dx

i ,d
y
j ) is the ground cost function to move

the dictionary element dx
i to dy

j , and the transport mapping
function T satisfies,

Π(a, b)
def
= {T ∈ Rm×n

+ |T1n = a,T⊤1m = b}. (7)

In view of the above notations, we now interpret that
the optimal style transfer over the learned style dictionaries,

parameterized by T ∈ Rn×m
+ , is generalized into,

min
T
⟨C,T⟩ def

= min
T

∑
i,j

Ci,jTi,j ,

s.t. DxA = X, ||αi||0 ≤ K1,
DyB = Y, ||βi||0 ≤ K2,
A1M = a, B1N = b ,
T1n = a, T⊤1m = b.

(8)

It is clear from Eq. 8 that the objective function aims
to infer an optimal transport plan between the learned
style dictionaries, in which the first and second constraints
are sparse representations for images, and the last two
constraints specify the property distributions of dictionaries
and the necessary conditions of transport plan. Despite the
simple form of Eq. 8, it is not easy to solve due to the L0-
norm constraints. In what follows, a relaxed model of Eq.
8 is further discussed with an approximate solution under
some mild assumptions.

Relaxed Model: As illustrated, image style transfer is
formulated into an optimal transport over sparse dictio-
naries with both sparse representation and optimal trans-
port constraints. However, a direct solution to Eq. 8 is not
available due to two-fold facts: (1) the sparse coefficient
constrains ||αi||0 ≤ K1 and ||βi||0 ≤ K2 are non-convex
and difficult to solve in practice; and (2) the sub-problem
with respect to the variable A is a typical Sylvester equation
[3] constrained by DxA = X and A1M = a1. As a result,
it is necessary to reduce the problem for a more efficient
solution.

Paying attention to A1M =a, B1N =b, we have X1M =
Dxa,Y1N =Dyb by multiplying Dx and Dy in both sides
of the third-line constraints in Eq. 8. As a result, a relaxed
minimization problem can be written in the form,

min
T
⟨C,T⟩ def

= min
T

∑
i,j

Ci,jTi,j ,

s.t. DxA = X, ||αi||0 ≤ K1,
DyB = Y, ||βi||0 ≤ K2,
Dxa = X1M , Dyb = Y1N ,
T1n = a, T⊤1m = b.

(9)

1. The Sylvester equation has the form AX + XB = C, whose
solution is computational expensive in case of a large-scale problem
[3].
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This relaxation adores the constraints on sparse dic-
tionaries instead of coefficients, leading to two-fold ben-
efits. On the one hand, the constraints Dxa = X1M ,
and Dyb = Y1N in Eq. 9 change the sparse coefficient
constraints into style dictionaries constraints, which helps
to learn more favorable style dictionaries. On the other
hand, it reduces the sub-problem with respect to A (or, B)
into a standard sparse coding form, thereby avoiding the
complex Sylvester equation. As interpreted hereafter, the
relaxed problem can be approximately optimized using an
alternative variable splitting method under the assumption
of p-Wasserstein cost function.

4.2 The Solution of p-Wasserstein Case

The cost function Ci,j
def
= c(dx

i ,d
y
j ) is important to the

optimal transport plan [51]. It turns out that the transport
plan always exists when taking into account p(p ≥ 1)-
Wasserstein distance W p

p(µ,ν). For simplicity, we consider
p = 2 Wasserstein distance, where the cost function is
defined as Ci,j∥dx

i −d
y
j∥

2

2
, which measures the distance of

a pair of dictionary elements (dx
i ,d

y
j ). Clearly, we have

Ci,j = 0 if dx
i = dy

j .
Recalling the relaxed model in Eq. 9, we first rewrite

the constrained optimization problem into an unconstrained
one based on regularization techniques and then apply the
well-known alternative variable splitting algorithm to solve
it approximately. By introducing the Lagrangian multiplier
technique, the above problem can be reformulated into
an unconstrained optimization problem and solved via an
alternative minimization scheme as follows:

argmin
{Dx,Dy,A,B,T}

γ
∑
i,j

Ti,j∥dx
i −dy

j ∥
2

2
+

∥∥X−DxA
∥∥2

F
+
∥∥Y−DyB

∥∥2

F

+λx

∥∥X1M−Dxa
∥∥2

F
+ λy

∥∥Y1M−Dya
∥∥2

F

+τx
∥∥T1n−a

∥∥2

2
+τy

∥∥T⊤1m−b
∥∥2

2
(10)

Where γ, λx(y), τx(y) and κx(y) are positive Lagrangian mul-
tipliers. Accordingly, the solution of Eq. 10 convergent to
that of Eq. 9 when the Lagrangian multipliers go to infinity.
The main idea of the alternating method is to solve the prob-
lem sequentially by fixing one variable from another. It is
easy to see that Eq. 9 can be divided into three sub-problems:
sparse coding, style dictionaries learning and transport map
inferring, respectively. For brevity, we describe the solution
for the variables T,Dx,A, and a, and Dy,B, and b can be
processed analogically.

Sparse coding: By fixing T,Dx,Dy and a, b in Eq.
10, the optimization problem w.r.t. the variables A and B
is then reduced into a standard sparse encoding problem.
Considering X1M = Dxa,Y1N = Dyb, the variables A
and B only have sparse constraints. Taking the coefficient A
for example, the representation vectors αi for each example
xi in X is the i-th column of A, which is attained by solving
the following problem,

min
αi

||αi||0, s.t. xi = Dxαi. (11)

As aforementioned, the sparse coding problem of Eq. 11
can be solved by many existing methods such as match-
ing pursuit (MP) or orthogonal matching pursuit (OMP)
algorithms [1], [5]. We here use the OMP method for ease

of implementation. Once the coefficients A and B are ob-
tained, we have the row sums of the coefficients — that is,
a = A1M , b = B1N and they provide a discrete probability
measure for dictionary atoms. It is worth mentioning here
that the probability distributions a and b must be positive,
while the learned coefficients may be negative here. It is
possible to remedy dx

i = −dx
i and A(i, :) = −A(i, :)

without affecting the sparse encoding process when the i-
th row sum ai is negative. The non-negative sparse coding
is also an alternative way for remedy in practice. Without
the ambiguity a and b are also denoted as the normalized
counterparts.

Learning style dictionaries: By analogy, we then fix
the coefficients A,B and transport map T and update the
style dictionaries Dx and Dy , respectively. Considering the
relaxed constraints X1M = Dxa,Y1N = Dyb, we rewrite
the Tikhonov regularization form of the sub-problem of Eq.
10 with respect to Dx (or, Dy) as,

argmin
{dx

i }
∥DxA−X∥2F + λx∥Dxa−X1M∥22

+γ
∑
i,j

Ti,j∥dx
i −d

y
j∥

2

2

(12)

where λx and τx are the positive weights. Accordingly,
Eq. 10 can be viewed as a regularized dictionary learning
problem. To learn the redundant style dictionaries, we use
the famous K-SVD algorithm [1] to update each element
dx
i of dictionary Dx sequentially. Notice that the original

K-SVD algorithm is not directly applicable due to the regu-
larization terms in Eq. 12. We instead introduce an extended
K-SVD algorithm for updating dictionaries. For clarity, we
first review the original K-SVD algorithm [1] and show how
to extend it to the proposed model.

The Extended K-SVD Algorithm: In the K-SVD algo-
rithm [1], sparse representation is to factorized an image X
into a multiple form of the dictionary Dx and coefficient A,
that is, X=DxA. We now focus on the style dictionaries-
learning process by fixing the sparse coefficient A. The
dictionary Dx can be updated by minimizing the objective
function,

∥X−DxA∥2F =

∥∥∥∥∥X−
n∑

j=1

dx
jα

j
T

∥∥∥∥∥
2

F

=

∥∥∥∥∥∥
X−

∑
j ̸=k

dx
jα

j
T

−dx
kα

k
T

∥∥∥∥∥∥
2

F

=
∥∥∥Ek−dx

kα
k
T

∥∥∥2

F
(13)

where Ek = X−
∑

j ̸=k d
x
jα

j
T is the residual part that not

involves the k-th dictionary element dx
k , and αk

T is the k-
th row of the coefficient matrix A. With the above form,
dx
i is updated as the first left eigenvector given by SVD

algorithm based on the K-SVD algorithm [1]. The basic idea
here is to decompose the term DxA into the sum of n rank-1
matrices, where only one dictionary element dx

k is involved
and can be updated independently in each time when fixing
the remainder Ek. This strategy helps to learn the redundant
dictionaries more efficiently.

The process can be analogically extended to the reg-
ularization case. Let Ek = X −

∑
k ̸=i d

x
kα

T
k and Fk =

X1M −
∑

k ̸=i d
x
ka

T
k be the residual of ∥DxA−X∥2F and

∥Dxa−X1M∥22 without using the element dx
i , where αk
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(a) Input (b) MKL (c) ROT (d) PhotoNAS (e) NeuralPreset (f) Ours (g) Reference

Figure 4: Visual comparison of color transfer on natural images. From left to right: (a) content images, (b) MKL [52], (c)
Regularized OT [16], (d) PhotoNAS [2], (e) NeuralPreset [35], (f) our results, and (g) reference images. (Zoom in for better
view).

and ak are the k-th row vector of A and a. With this
notation, the first two terms in Eq. 12 can be rewritten as
∥Ek−dx

i α
T
i ∥

2

F and ∥Fk−dx
i a

T
i ∥

2

F , respectively. The sub-
problem Eq. 12 with respect to the k-th dictionary dx

k can
be rewritten into the form,

argmin
dx
k

∥∥∥Ek−dx
kα

k
T

∥∥∥2
F
+ λx

∥∥∥Fk−dx
ka

k
T

∥∥∥2
F

+γ
∑
j

Tk,j∥dx
k−d

y
j∥

2

2
.

(14)

It is easy to verify that dx
i has a closed-form solution because

the objective function in Eq. 14 is quadratic with respect
to dx

k . The last two terms in Eq. 14 can be treated as the
regularization terms compared with Eq. 13 and such a reg-
ularization also helps to strengthen a more stable numerical
solution. The reader is referred to the K-SVD algorithm [1]
for more details.

Optimal transport: The transport mapping T over the
learned style dictionaries is a standard optimal transport
problem when fixing the style dictionaries Dx,Dy and
coefficients A,B, that is,

argmin
T

∑
i,j

Ti,j∥dx
i −d

y
j∥

2

2
,

s.t. T1n = a, T⊤1m = b.

(15)

It is worth noting that a discrete optimal transport can be
solved by linear programming, while the computational cost
increases significantly over the large-scale samplings [51].
It is empirically solvable in our case due to the small
size of style dictionaries, which forms one of the cores of

Algorithm 1 Optimal Transport using Sinkhorn algorithm.

Input: Cost function C, discrete distributions a and b,
parameter η, and maximum iterations K ;
Initialization: Let M = e−C/η,v ← 1, k ← 0
while k ≤ K do

uk+1 = a⊘ (Mvk)
vk+1 = b⊘

(
M⊤uk+1

)
end while
Output: T = diag(uk+1)Mdiag(vk+1).

our method. Notice that a and b in Eq. 12 represent the
normalized counterparts.

Entropy-Regularized Optimal Transport: It is well-
known that an exact solution to optimal transport based
on the network flow method has computational complex-
ity O

(
n3

)
for the n samplings [51]. The solution may be

unavailable when n exceeds thousands of samplings in a
general PC platform. Instead, we resort to a more efficient
entropy-regularized optimal transport,

argmin
T

∑
i,j

Ci,jTi,j + ηH(T)

s.t. T1m = a, T⊤1n = b.

(16)

where H(T) =
∑

i,j Ti,j(log(Ti,j) − 1) is the negative
entropic regularization, and η is the positive regularization
parameter. As interpreted in [6], the regularized model of
Eq. 16 is a convex optimization problem and can be solved
with the Sinkhorn-Knopp algorithm. A detailed solution is
also presented in Alg. 1. Note that the sub-problems in Alg.
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1 involve component-wise divide operators ⊘ that can be
computed efficiently.

4.3 Image Synthesis

Once the dictionaries Dx and Dy and transport map T
are obtained, given an image x in style sx, it is then easy
to reconstruct an image ŷ with the style sy by swapping
the corresponding style dictionaries but keeping the sparse
representing coefficients invariant, that is,

ŷi = D̂xαi = T(Dy)αi, (17)

where the k-th column of D̂x is d̂
x

i =T(dy
j ) =

∑n
j=1 Ti,jd

y
j∑n

j=1 Ti,j
,

which can be viewed as a posterior mean estimate to define
a one-to-one of the transfer function [53], and αi is the
sparse coefficients of patch xi. In most cases, the image x
is not exactly the same as training data — but is sampled
from an identical distribution, the coefficients αi for each
patch xi can be learned based on the sparse coding Eq.
14. In the cases of photo-realistic image transfer, it may be
preferable to add some constraints for more consistent local
textures, for example, using a simple gradient regularization
for image synthesis,

argmin
ŷ

∥ŷ − D̂xα∥22 + ρ∥∇ŷ −∇x∥22 (18)

where ∇ is the gradient operator and ρ is the parameter to
weight the gradient regularization term. It is easy to verify
that Eq. 18 can be easily computed due to its closed-form
solution.

5 EXPERIMENT RESULTS

In this section, we extensively illustrate the performance
of optimal style transfer and show the empirical evidence
on two fundamental image-to-image translation tasks: color
transform and artistic style transfer. In each scenario, the
sparse coefficients and individual dictionaries are firstly
learned using sparse representation and then an optimal
transport map is derived on the learned dictionaries (See
Fig. 1). The process is updated iteratively until it converges
to a given stop criteria. The learned dictionaries are treated
as individual feature styles for image reconstruction.

5.1 Configurations

For simplicity, we only show the training and reconstruction
process on a pair of content and reference images, while
it is easy to immigrate the procedure to the case of large-
scale datasets. Let {xi}Mi=1, {yj}

N

j=1
be two patches data

and Dx = [dx
1 , · · · ,d

x
m], Dy = [dy

1, · · · ,d
y
n] be dictionaries

as defined before, we randomly select M(N)=10K∼100K
patches depending on the size of images. The dictionary size
m(n) = 256 in most cases for computational efficiency. In
general, the larger size of dictionaries helps to produce bet-
ter performance, which however is computationally expen-
sive, especially for the large-scale optimal transport between
dictionaries. The patch size is 16×16 pixels (d = 256) and it is
sequentially concatenated by channels for color images. As
illustrated, we use an extended K-SVD algorithm to update
the dictionaries.

Figure 5: The normalized distributions a, b, and the cor-
responding optimal map T (left), and the loss curves of
sparse representation, OT constraints and transport plan
with iterations (right).

The parameters are configured as follows. In the sparse
coding step, we update the sparse coefficients based on or-
thogonal matching pursuit (OMP) algorithm [5], and specify
the representation error (κ = 10−5) as the stop criteria for
each patch data xi (yj). It is necessary to check the row
sum of coefficient matrices A and B to be positive in each
step. In the dictionary update step, each element dx

i (dy
j )

is sequentially updated by solving 10, where λx(λy) = 1.0
and τx(τy) = 10.0. Similar to the K-SVD algorithm [1], we
replace the correlated dictionary atoms by the randomly-
selected data samples, which helps to learn the individual
styles more faithfully. In the optimal transport step, a linear
program solver [51] is employed for the small-size cases.
We set ρ=0.01 in 13 if necessary. In large-size dictionaries,
for example, m(n) ≥ 512, one can resort to the entropy-
regularization for efficiency [6]. The process is updated
iteratively until it converges to the stop criteria.

We interpret the training process by taking the exam-
ple in 1 into account. Let Esp(X) = ∥DxA−X∥2F and
Esp(Y) = ∥DyB−Y∥2F be sparse representation errors,
Eot(a) = ∥Dxa−X1N∥22 and Eot(b) = ∥Dyb−Y1M∥22 be
errors of OT constrains of distributions a and b, and the
transport cost Ec(T)=⟨C,T⟩, the normalized distributions
a and b of two dictionaries Dx and Dy , and the optimal
transport plan T are illustrated in 6 (left), and the loss curves
are plotted with iterations in 5 (right). It takes around 20∼50
iterations to converge the stable solution. The configurations
enable us to produce acceptable results in most cases. It
takes around 2s for reconstructing a pair of 512 × 512
resolution color images, while it takes 5s to update coupled
dictionaries and the transport in each iteration.The imple-
mentation is based on our Matlab 2015b with a desktop PC,
Intel i7-9800X CPU 3.80GHz and 64G RAM.

5.2 Color Transform
We first show the color transform performance against
two OT-based methods: Monge-Kantorovitch linear (MKL)
mapping [52] and regularized discrete optimal transfer
(ROT) [16] respectively. Due to the high computational cost
of large-scale OT problems, the transformation maps in
both cases are firstly derived on sub-samplings, and post-
processing such as interpolation and filtering method is
then applied for image reconstruction. We also compare the
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(a) Content (b) Ours (c) Reference (d) Content (e) Ours (f) Reference

Figure 6: Artistic style transfer effects. Given input images (a) and (d), and reference images (c) and (f), the proposed model
gives rise to the stylized results (b) and (e) with consistent textures and structures (Zoom in for better view).

Table 1: Quantitative comparison of style transfer methods. The best two results are highlighted in bold and underlined,
respectively.

Methods Metrics AdaIN [30] WCT [40] Photo WCT [41] WCT2 [66] StyTr2 [9] QuantArt [29] Ours
Pixel
level

SSIM (edge) ↑ 0.5785 0.6174 0.6773 0.6160 0.4944 0.7590 0.7934
IIT loss [28] ↓ 61.35 44.82 35.34 34.51 50.02 41.38 32.87

Feature
level

Gram loss [30] ↓ 1.64 1.87 1.45 1.28 1.51 2.17 1.37
LPIPS loss [67] ↓ 0.5260 0.5645 0.2284 0.2885 0.4532 0.4257 0.2146
FID metric [24] ↓ 278.45 272.57 153.81 152.49 246.75 146.50 152.20

results with neural color transfer methods: PhotoNAS [2]
and neural preset [35], respectively. As stated therein, both
of them employ specially-designed network architectures
and are trained on huge amount datasets to avoid artifacts
with cutting-edge color mapping effects.

As shown in Fig.6, the OT-based MKL mapping [52]
and ROT model [16] faithfully convert the content color
in both cases according to the guidance of the reference
images. The former reveals color degradation with over-
smoothing details (Fig. 6b), while the latter exhibits block
artifacts (Fig. 6c) due to the sub-sampling strategy, although
they can be partially rectified by some filtering methods. The
neural transfer methods [2], [35] produce fine details but
they may suffer from inappropriate color mapping, leading
to over-saturated or under-saturated effects. In contrast, the
proposed model (Fig. 6f) greatly alleviates the drawbacks
for better results due to the strategy of simultaneous rep-
resentation and transformation, while the improvement is
achieved at the expense of high computational cost of dic-
tionary training and image reconstruction compared with
the sub-sampling strategy.

5.3 Photo-realistic Style Transfer
We further show that the proposed model is applicable to
artistic style transfer, especially the photo-realistic effects.
As shown in Fig. 6, we present the transferred results with
the artworks created by famous artists. It is clear that all

cases have very complex content information composed of
sophisticated painting strokes and multiple colors, and tex-
tures for aesthetic effects. To receive visual-pleasant results,
we randomly select 100K patches from content and refer-
ence images, and use 1024 dictionary elements for training.
The optimal transport is solved by the entropy-regularized
method [6] with regularization parameter γ = 0.05 and 200
iterations for each optimal transport step. The new model
is possible to produce visual-pleasant transferred results
with consistently aesthetic styles and well-preserved details.
In Fig. 7, we additionally show the high-quality model
performance in the scenarios of different reference styles,
which demonstrate the benefits of sparse representation and
optimal transport.

In Fig. 8, we compare the transferred results with deep
learning-based methods. The AdaIN model [30] and WCT
method [30] are two well-known arbitrary image style
transfer methods. As shown in Fig. 8b and Fig. 8c, both of
them are capable of transforming the global features such
as image colors and main structures for impressive results,
however, they may have limitations in suppressing non-
consistent local details. Recently, the transformer-based ar-
chitecture shows great attention in many vision-based tasks.
We here also include the StyTr2 model [9] for comparison,
however, it also suffers slight non-consistent local details
in Fig. 8d despite the powerful transformer architecture.
In addition, we also compare the transferred results with
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Reference
Images

Content
Images

(a) Input (b) Style 1 (c) Style 2 (d) Style 3 (e) Style 4

Figure 7: Visual results of artistic style transfer of the proposed method. The content images in the first column are
transferred according to the given styles in the first row. (Zoom in for better view).

the photo-realistic methods: PhotoWCT model [41], WCT2

method [66] and QuantArt [29], in which the non-consistent
local details can be significantly suppressed as verified in
Fig. 8e ∼ Fig. 8g. Similarly, the proposed method also
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 8: Visual comparison of artistic style transfer with deep learning methods: (a) Input content and style images, (b)
AdaIN [30], (c) WCT [40], (d) PhotoWCT [41], (e) WCT2 [66] (f) StyTr2 [9], (g) QuantArt [29] and (h) our results. (Zoom in
for better view).

gives arise to photo-realistic results with more consistent
local textures and details in 8h. In summary, the proposed
method is applicable for both natural and artistic images,
and the results further demonstrate its ability in retrieving
consistent details.

Additionally, we present the quantitative performance
against recent deep learning-based methods. Notice that
an objective assessment is often difficult due to the lack
of ground truth in aesthetic significance. As suggested in
recent work [2], [9], [29], we adopt the structural similarity
(SSIM) of edge maps between content and transferred im-
ages to indicate detail preservation ability. We also take the
structure fidelity into account based on the intrinsic image

transfer (IIT) algorithm [28] in consideration of the robust
structure-preserving property in varying illumination (color
and brightness) conditions. Meanwhile, we introduce three
deep learning-based evaluation metrics: LPIPS loss [67],
Gram loss (VGG style features) [9], [29], [30] and FID met-
ric [24], which measure the perceptual similarity between
the content and generated images from the aspects of image
content, style and visual fidelity, respectively.

The evaluation is conducted on a small subset with 21
paired content and reference images sampled from of the
WikiArt dataset [56]. For fairness, all images are rescaled
into 512 × 512 resolution and the statistic results are listed
in ??. As we can see, the results are consistent with the visual
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effects in Fig. 8. The AdaIN [30] method is efficient but has
low performance of structural fidelity on both SSIM-edge
and IIT indexes. The WCT [40] receives obvious improve-
ments in structural similarity, but the perceptual similarity
is decreased due to the over-smoothing local structures. The
increased trend of structural similarity is also observed in
both PhotoWCT [41] and WCT2 [66] methods. Moreover,
they have much better perception-based LPIPS, Gram loss,
and FID metric, which can be also demonstrated from their
photo-realistic transferred effects. The StyTr2 [9] shows very
similar effects as AdaIN method and the QuantArt [29]
produce high-quality consistent structures, but has limited
perceptual similarity in Gram loss and FID metric, which
may be caused by the limited color transform in some
cases. In contrast, the proposed method gives a fine bal-
ance between structural fidelity and perceptual similarity in
content, style, and visual fidelity, which is observed in the
visual effects in Fig. 8. The benefits mainly underpin the fact
that sparse representation provides a simple but effective
tool that is especially suitable for low-level or middle-level
feature extraction, especially in the case of pursuing photo-
realistic image transfer effects.

6 CONCLUSIONS

In this paper, we propose a novel optimal transport over
sparse dictionaries to explore the two-fold benefits of sparse
representation and optimal transport. We have illustrated
that sparse representation provides an easy-grasped tool to
encode abstract features such as color, textures, and optimal
transport over a small size of learned dictionaries is also
computationally efficient in practice. As a result, it helps to
simplify the procedure of many image-to-image translation
problems significantly. Experimental results show that the
proposed model is empirically solvable on several image-
to-image translation tasks with plausible transferred results.
It is worth noting that the proposed method can be further
extended from different aspects, for example, using shared
dictionaries, extending to multi-scale cases and learning
more confident individual styles with regularization tech-
niques, which are leaving for further work.
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[51] Gabriel Peyré, Marco Cuturi, et al. Computational optimal trans-
port: With applications to data science. Foundations and Trends® in
Machine Learning, 11(5-6):355–607, 2019.

[52] François Pitié and Anil Kokaram. The linear monge-kantorovitch
linear colour mapping for example-based colour transfer. 2007.

[53] Julien Rabin, Sira Ferradans, and Nicolas Papadakis. Adaptive
color transfer with relaxed optimal transport. In 2014 IEEE
international conference on image processing (ICIP), pages 4852–4856.
IEEE, 2014.

[54] Erik Reinhard, Michael Adhikhmin, Bruce Gooch, and Peter
Shirley. Color transfer between images. IEEE Computer graphics
and applications, 21(5):34–41, 2001.

[55] Ron Rubinstein, Alfred M Bruckstein, and Michael Elad. Dictio-
naries for sparse representation modeling. Proceedings of the IEEE,
98(6):1045–1057, 2010.

[56] Wendy Kan small yellow duck. Painter by numbers. https://
kaggle.com/competitions/painter-by-numbers, 2016. Accessed:
2023-02-10.

[57] Yu-Wing Tai, Jiaya Jia, and Chi-Keung Tang. Local color transfer
via probabilistic segmentation by expectation-maximization. In
2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), volume 1, pages 747–754. IEEE,
2005.

[58] Zhengyan Tong, Xiaohang Wang, Shengchao Yuan, Xuanhong
Chen, Junjie Wang, and Xiangzhong Fang. Im2oil: Stroke-based oil
painting rendering with linearly controllable fineness via adaptive
sampling. In Proceedings of the 30th ACM International Conference
on Multimedia, pages 1035–1046, 2022.

[59] Rene Vidal, Yi Ma, and Shankar Sastry. Generalized principal
component analysis (gpca). IEEE transactions on pattern analysis
and machine intelligence, 27(12):1945–1959, 2005.

[60] Cédric Villani. Topics in optimal transportation, volume 58. Ameri-
can Mathematical Soc., 2021.

[61] Shenlong Wang, Lei Zhang, Yan Liang, and Quan Pan. Semi-
coupled dictionary learning with applications to image super-
resolution and photo-sketch synthesis. In 2012 IEEE Conference
on Computer Vision and Pattern Recognition, pages 2216–2223. IEEE,
2012.
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