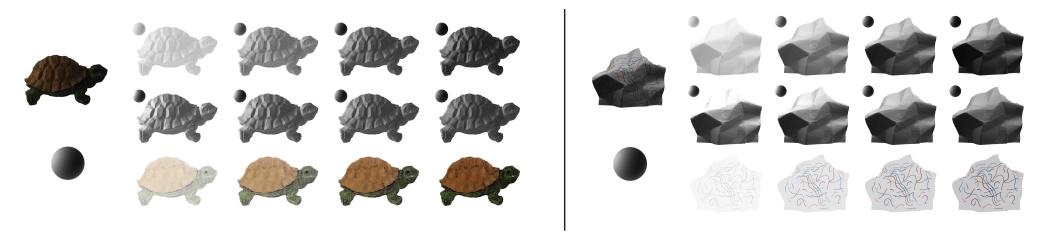


Intrinsic Image Transfer for Illumination Manipulation

Junqing Huang¹, Michael Ruzhansky^{2,4}, Qianying Zhang³, Haihui Wang¹ Beihang University, ² Ghent University, ³ Jinan University, ⁴ Queen Mary University of London

Introduction

Background: It is always inevitable for natural images to suffer from degradations under varying illumination conditions, in which a fine-ballanced illumination can be beneficial for many image processing and computer vision tasks.



Retinex model: An image \mathcal{I} may be simply assumed to be factorized into two components: illumination \mathcal{L} and reflectance \mathcal{R} ,

$$\mathcal{I} = \mathcal{L} \odot \mathcal{R}, \tag{1}$$

where \odot is a point-wise multiplication, \mathcal{L} represents the illuminaiton-dependent properties such as shading, shadows or specular highlights, and R represents the material-dependent properties, known as the intrinsic image of a scene.

Method

Main Idea: A possible way to illumination manipulation is to control the corresponding sub-layers independently under the well-known spatial-smoothing illumination and illumination-invariant reflectance prior knowledge.

Model: Let $s = \{s\}_i^N$, $c = \{c\}_i^N \in \mathbb{R}^N$ be source and exemplar, the output $o = \{o\}_i^N$ can be expressed as the solution,

$$\min_{\mathbf{o}} E(\mathbf{o}) = \alpha E^{l}(\mathbf{o}) + \beta E^{r}(\mathbf{o}) + \gamma E^{c}(\mathbf{o}),$$
(6)

where E^l , E^r and E^c are photorealistic loss defined on the image illumination, reflectance and content, respectively.

Contributions:

- A generalized minimization framework—intrinsic image transfer (IIT) is designed under the well-known spatial-smoothing illumination and illumination-invariant reflectance prior knowledge.
- The photorealistic losses (illumination, reflectance, and content) are firstly defined on each sub-layer and then simplified without the necessity of taking an explicit intrinsic image decomposition.
- A closed-form solution to per-pixel image illumination manipulation is attained with favorable results on natural images having comparable or superior to the existing state-of-the-art methods.

Formulation

Illumination loss: The illumination layer is smoothing and changeable,

$$E^{l}(\mathbf{o}) = \sum_{i} (o_{i}^{l} - c_{i}^{l})^{2} = \sum_{i} \sum_{j \in \mathcal{N}_{i}} (\mathcal{K}_{i,j}^{1} o_{j} - \mathcal{K}_{i,j}^{2} c_{j})^{2},$$
(3)

where c is a so-called "exemplar" image, and $\mathcal{K}_{i,j}^{1(2)}$ are (Gaussian or bilateral) smoothing kernels,

$$\mathcal{K}_{i,j} \propto \exp\left(-\frac{1}{\delta_{\boldsymbol{f}}^2} \|\boldsymbol{f}_i - \boldsymbol{f}_j\|_2^2\right), \quad \sum_{j \in \mathcal{N}_i} \mathcal{K}_{i,j} = 1,$$
 (4)

where $o_i^l = \sum_{j \in \mathcal{N}_i} \mathcal{K}_{i,j} o_j$ and \boldsymbol{f} is feature vector.

Reflectance loss: A local linear embedding (LLE) is used to encode the reflectance layer s,

$$s_i^r = \sum_{j \in \Omega_i} \omega_{i,j}^{s^r} s_j^r, \quad \sum_{j \in \Omega_i} \omega_{i,j}^{s^r} = 1.$$

$$(5)$$

Due to the translation-invariant property of LLE algorithm, it is possible extent Eq.(5) to images, giving the loss,

$$E^{r}(\boldsymbol{o}) = \sum_{i} \left(o_{i} - \sum_{j \in \Omega_{i}} \omega_{i,j}^{o} o_{j}\right)^{2}$$
s.t. $\omega_{i,j}^{o} = \omega_{i,j}^{s}, \quad s_{i} = \sum_{j \in \Omega_{i}} \omega_{i,j}^{s} s_{j},$

$$(6)$$

Content loss: An additionally content loss $E^c(\mathbf{o})$ is also introduced to | Algorithm: We summarize the proposed image avoid the illumination over-fitting,

$$E^{c}(\mathbf{o}) = \sum_{i} (o_i - s_i)^2. \tag{7}$$

Optimization: Rewrite the losses in a matrix form:

$$E(\boldsymbol{o}) = \alpha \| \boldsymbol{K}^{1} \boldsymbol{o} - \boldsymbol{K}^{2} \boldsymbol{c} \|_{2}^{2} + \beta \| \boldsymbol{M} \boldsymbol{o} \|_{2}^{2} + \gamma \| \boldsymbol{o} - \boldsymbol{s} \|_{2}^{2},$$
s.t. $\omega_{i,j}^{o} = \omega_{i,j}^{s}, \quad s_{i} = \sum_{j \in \Omega_{\dot{s}}} \omega_{i,j}^{s} s_{j},$

$$(8)$$

where $m{K}^{1(2)}$ are kernel matries and $m{M} = [m{I} - m{W}]$ with identity $m{I}$ and W containing entries $\omega_{i,j}^o$. We solve the LLE weights,

$$\min \sum_{i} (s_i - \sum_{j \in \Omega_i} \omega_{i,j}^s s_j)^2 + \epsilon \|\boldsymbol{\omega}^s\|_2^2, \text{ s.t. } \sum_{j \in \Omega_i} \omega_{i,j}^s = 1.$$
(9)

Once K and W are available, Eq. (9) is solved by setting dE/do = 0, giving the linear system:

$$(\alpha \mathbf{K}^T \mathbf{K} + \beta \mathbf{M}^T \mathbf{M} + \gamma \mathbf{I}) \mathbf{o} = \alpha \mathbf{K}^T \mathbf{K} \mathbf{c} + \gamma \mathbf{s}, \tag{10}$$

where $L = \alpha K^T K + \beta M^T M + \gamma I$ is a large sparse positive matrix and Eq. (10) has a closed-form solution.

illumination manipulation as follows:

Algorithm1: Intrinsic Image Transfer (IIT),

Input: Images $\{s_i\}_{i=1,\dots,N}$, $\{c_i\}_{i=1,\dots,N}$ and parameters α, β, γ ;

1. Identifying filters: K^1 and K^2

- 1. Set parameters: $\mathcal{N}_i, \delta_s, \delta_r$ or $(\mathcal{N}_i, \delta_s)$;
- 2. Compute $K_{i,j}$ and K^1 , K^2 in Eq. (4);
- 2. Computing LLE weights: W
- 1. Set parameters: Ω_i , ϵ ;
- 2. Find neighbors Ω_i for each pixel i;
- 3. Compute $\omega_{i,j}^s$ in Eq. (9);
- 4. Set $\omega_{i,j} = \omega_{i,j}^s$, and M = I W;

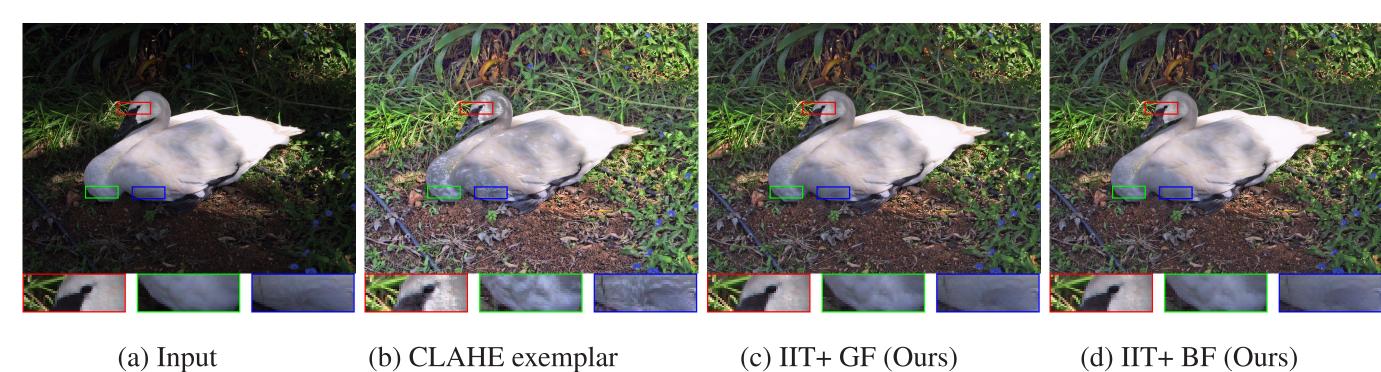
3. Reconstruction

- Compute the Laplacian matrix L in Eq. (10);
- 2. Solve Eq. (10) with PCG algorithm;

Output: Image $\{o_i\}_{i=1,\dots,N}$;

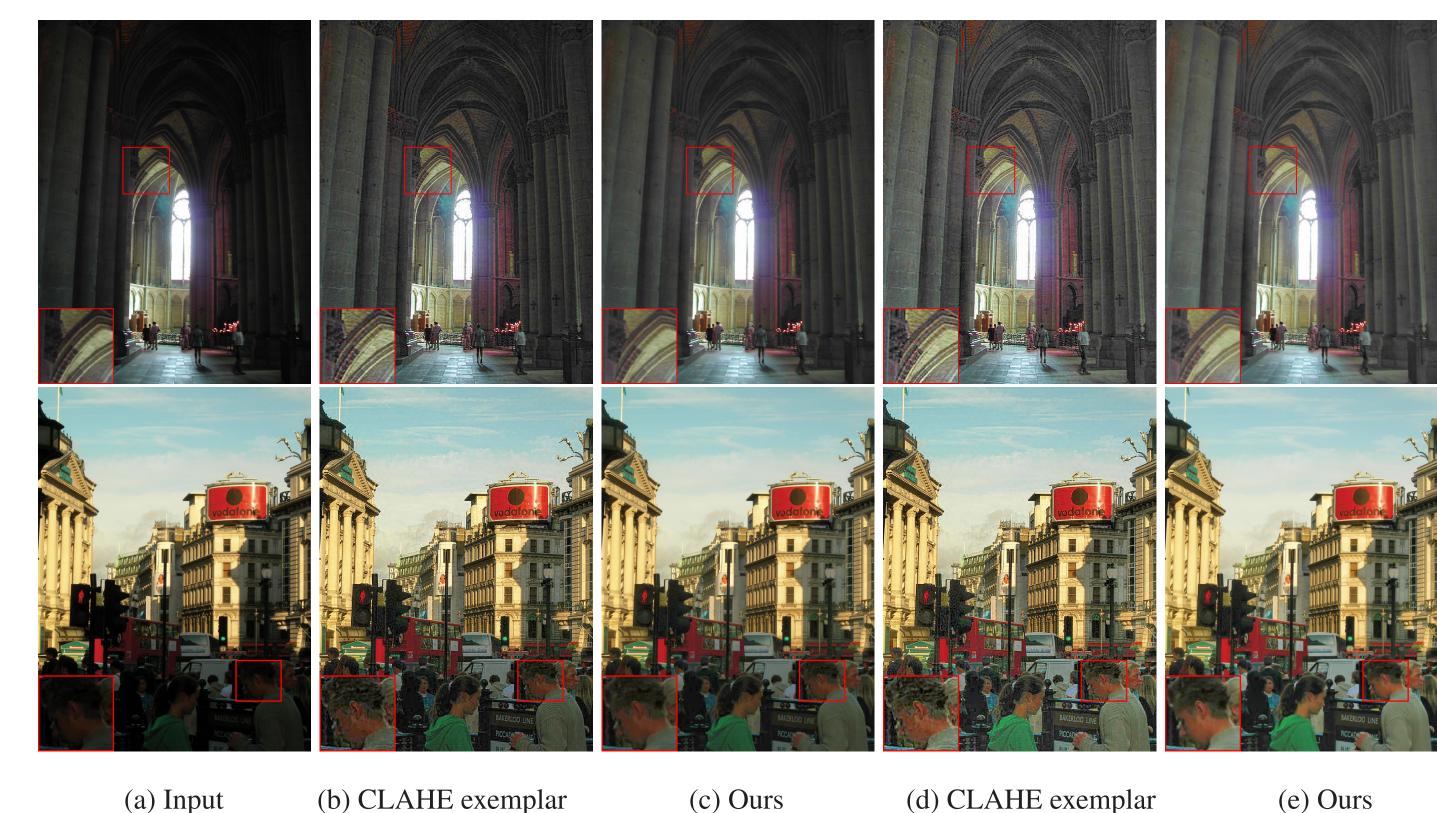
Experiments & Results

Gaussian filter (GF) v.s. Bilateral Filter (BF)



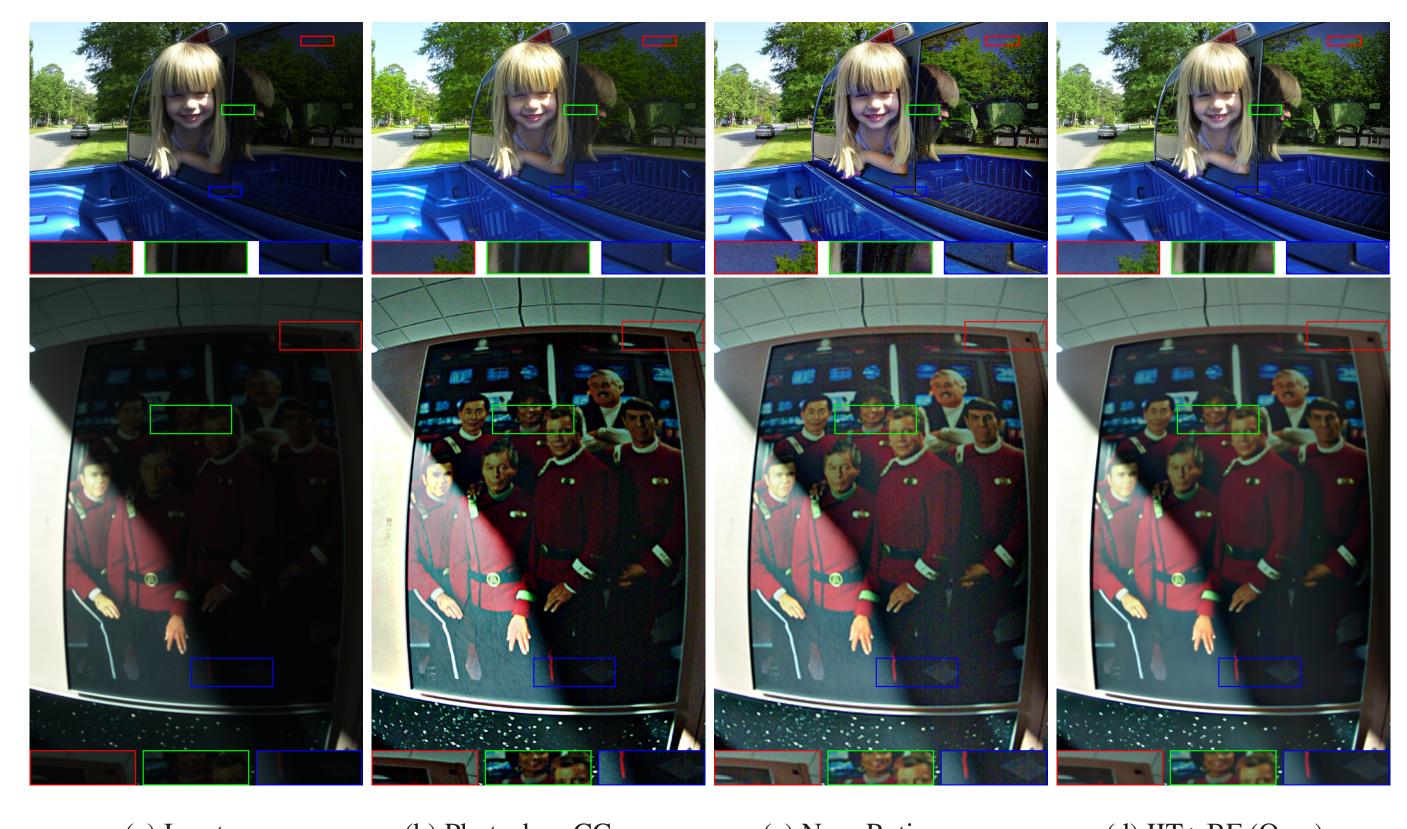
• Visual results of our IIT algorithm with the Gaussian and bilateral filters, respectively. The noise and distortions around the swan's "neck" and "wing" are suppressed significantly.

Verification for Exemplars



• Visual comparison of our IIT algorithm by using exemplars with different levels of brightness.

Natural Image Tone Mapping



(a) Input (b) Photoshop CC (c) Nasa Retinex (d) IIT+ BF (Ours) • Visual comparison of image enhancement. The exemplars in (d) are produced by the state-of-art NASA Retinex.

HDR Image Compression

• Visual comparison of high dynamic range (HDR) image compression with the CLAHE exemplars.

(c) Exemplar

(d) Reference style

Photo-realistic Style Transfer

(a) Input

• Photorealistic style transfer. Given an image (a) and a reference style (d), a stylized exemplar (c) is provided by the deep-learning methods, which is then refined by our IIT method in (b) with more consistent textures and structures.

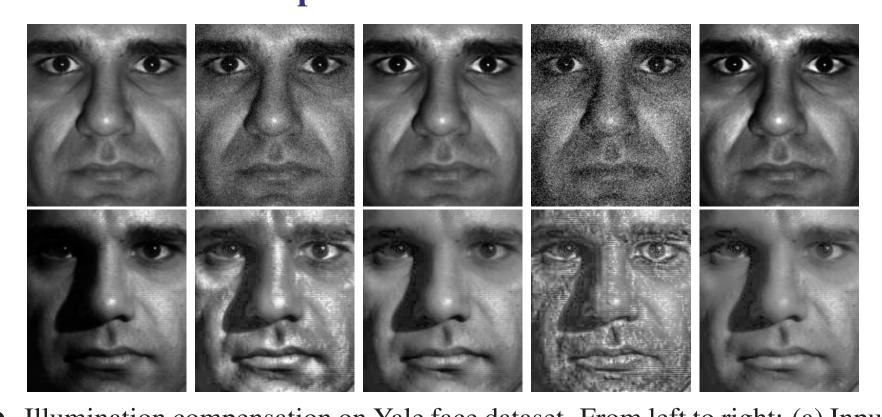
(b) Ours

Quantitative Evaluation:

Method	Cityscapes (WESPE)			NASA (Retinex)			DPED (CLAHE)		
	(SF / SN) TMQI	IL-NIQE	NIMA	(SF / SN) TMQI	IL-NIQE	NAMA	(SF / SN) TMQI	IL-NIQE	NIMA
NASA Retinex	(- / -) -	-	-	(0.916 / 0.731) <u>0.937</u>	20.71	4.562	(-/-)-	-	-
Photoshop CC	(0.988 / 0.323) 0.887	17.37	3.859	(0.948 / 0.428) 0.892	21.65	4.003	(0.982 / 0.507) 0.916	22.38	4.479
APE	(0.946 / 0.272) 0.840	24.25	4.002	(0.981 / 0.618) 0.937	20.91	3.922	(<u>0.980</u> / 0.566) 0.927	21.62	4.613
Google Nik	(0.927 / 0.527) 0.906	21.32	4.131	(0.968 / 0.812) 0.965	23.15	3.822	(0.963 / 0.567) 0.925	<u>21.53</u>	4.523
WESPE	(0.915 / 0.839) 0.956	20.25	4.338	(- / -) -	-	-	(0.931 / 0.626) 0.928	22.25	4.534
IIT+GF (Ours)	(0.979 / <u>0.835</u>) 0.971	4.252	4.313	(0.957 / 0.650) 0.936	20.62	4.475	(0.969 / 0.587) 0.929	21.95	4.555
IIT+BF (Ours)	(<u>0.981</u> / 0.826) <u>0.970</u>	16.48	4.293	(0.960 / <u>0.678</u>) 0.942	20.57	4.470	(0.973 / <u>0.589</u>) 0.931	21.31	4.540

• The exemplars in the datasets are given by the WESPE, Retinex and CLAHE methods, respectively.

Robustness to Exemplars



• Illumination compensation on Yale face dataset. From left to right: (a) Input, (b) Exemplar (noisy), (c) Ours, (d) Exemplar (distortion), and (e) Ours.

Project Webpage: Code & Dataset & Model

